metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: PubMedBERT-MNLI-MedNLI
results: []
PubMedBERT-MNLI-MedNLI
This model is a fine-tuned version of PubMedBERT on the MNLI dataset first and then on the MedNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.9501
- Accuracy: 0.8667
Model description
More information needed
Intended uses & limitations
The model can be used for NLI tasks related to biomedical data and even be adapted to fact-checking tasks. It can be used from the Huggingface pipeline method as follows:
from transformers import TextClassificationPipeline, AutoModel, AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI", num_labels=3, id2label = {1: 'entailment', 0: 'contradiction',2:'neutral'})
tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device=0, batch_size=128)
pipe(['ALDH1 expression is associated with better breast cancer outcomes',
'In a series of 577 breast carcinomas, expression of ALDH1 detected by immunostaining correlated with poor prognosis.'])
The output for the above will be:
[[{'label': 'contradiction', 'score': 0.10193759202957153},
{'label': 'entailment', 'score': 0.2933262586593628},
{'label': 'neutral', 'score': 0.6047361493110657}],
[{'label': 'contradiction', 'score': 0.21726925671100616},
{'label': 'entailment', 'score': 0.24485822021961212},
{'label': 'neutral', 'score': 0.5378724932670593}]]
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5673 | 1.42 | 500 | 0.4358 | 0.8437 |
0.2898 | 2.85 | 1000 | 0.4845 | 0.8523 |
0.1669 | 4.27 | 1500 | 0.6233 | 0.8573 |
0.1087 | 5.7 | 2000 | 0.7263 | 0.8573 |
0.0728 | 7.12 | 2500 | 0.8841 | 0.8638 |
0.0512 | 8.55 | 3000 | 0.9501 | 0.8667 |
0.0372 | 9.97 | 3500 | 1.0440 | 0.8566 |
0.0262 | 11.4 | 4000 | 1.0770 | 0.8609 |
0.0243 | 12.82 | 4500 | 1.0931 | 0.8616 |
0.023 | 14.25 | 5000 | 1.1088 | 0.8631 |
0.0163 | 15.67 | 5500 | 1.1264 | 0.8581 |
0.0111 | 17.09 | 6000 | 1.1541 | 0.8616 |
0.0098 | 18.52 | 6500 | 1.1542 | 0.8631 |
0.0074 | 19.94 | 7000 | 1.1653 | 0.8638 |
Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
Citing & Authors
If you use the model kindly cite the following work (Paper accepted at BioNLP2023@ACL2023, citation will be updated)
Multiple Evidence Combination for Fact-Checking of Health-Related Information
}