|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: PubMedBERT-MNLI-MedNLI |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PubMedBERT-MNLI-MedNLI |
|
|
|
This model is a fine-tuned version of [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [MNLI](https://huggingface.co/datasets/multi_nli) dataset first and then on the [MedNLI](https://physionet.org/content/mednli/1.0.0/) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9501 |
|
- Accuracy: 0.8667 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
The model can be used for NLI tasks related to biomedical data and even be adapted to fact-checking tasks. It can be used from the Huggingface pipeline method as follows: |
|
|
|
|
|
```python |
|
from transformers import TextClassificationPipeline, AutoModel, AutoTokenizer, AutoModelForSequenceClassification |
|
model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI", num_labels=3, id2label = {1: 'entailment', 0: 'contradiction',2:'neutral'}) |
|
tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBERT-MNLI-MedNLI") |
|
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device=0, batch_size=128) |
|
|
|
pipe(['ALDH1 expression is associated with better breast cancer outcomes', |
|
'In a series of 577 breast carcinomas, expression of ALDH1 detected by immunostaining correlated with poor prognosis.']) |
|
``` |
|
|
|
The output for the above will be: |
|
|
|
```python |
|
[[{'label': 'contradiction', 'score': 0.10193759202957153}, |
|
{'label': 'entailment', 'score': 0.2933262586593628}, |
|
{'label': 'neutral', 'score': 0.6047361493110657}], |
|
[{'label': 'contradiction', 'score': 0.21726925671100616}, |
|
{'label': 'entailment', 'score': 0.24485822021961212}, |
|
{'label': 'neutral', 'score': 0.5378724932670593}]] |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.5673 | 1.42 | 500 | 0.4358 | 0.8437 | |
|
| 0.2898 | 2.85 | 1000 | 0.4845 | 0.8523 | |
|
| 0.1669 | 4.27 | 1500 | 0.6233 | 0.8573 | |
|
| 0.1087 | 5.7 | 2000 | 0.7263 | 0.8573 | |
|
| 0.0728 | 7.12 | 2500 | 0.8841 | 0.8638 | |
|
| 0.0512 | 8.55 | 3000 | 0.9501 | 0.8667 | |
|
| 0.0372 | 9.97 | 3500 | 1.0440 | 0.8566 | |
|
| 0.0262 | 11.4 | 4000 | 1.0770 | 0.8609 | |
|
| 0.0243 | 12.82 | 4500 | 1.0931 | 0.8616 | |
|
| 0.023 | 14.25 | 5000 | 1.1088 | 0.8631 | |
|
| 0.0163 | 15.67 | 5500 | 1.1264 | 0.8581 | |
|
| 0.0111 | 17.09 | 6000 | 1.1541 | 0.8616 | |
|
| 0.0098 | 18.52 | 6500 | 1.1542 | 0.8631 | |
|
| 0.0074 | 19.94 | 7000 | 1.1653 | 0.8638 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.0.dev0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
|
|
If you use the model kindly cite the following work (Paper accepted at BioNLP2023@ACL2023, citation will be updated) |
|
|
|
``` |
|
Multiple Evidence Combination for Fact-Checking of Health-Related Information |
|
} |
|
``` |