BL-pythia-31m-simplepile-lite-2048-scratch
Train from scratch based on config of EleutherAI/pythia-31m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.9891
- Accuracy: 0.3498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 1
- seed: 80085
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
7.4089 | 0.07 | 100 | 7.3885 | 0.1133 |
6.2774 | 0.13 | 200 | 6.2091 | 0.1621 |
5.7019 | 0.2 | 300 | 5.7450 | 0.1890 |
5.4922 | 0.27 | 400 | 5.4697 | 0.2080 |
5.233 | 0.33 | 500 | 5.2846 | 0.2195 |
5.0523 | 0.4 | 600 | 5.1479 | 0.2296 |
4.9396 | 0.47 | 700 | 5.0391 | 0.2376 |
4.7633 | 0.53 | 800 | 4.9366 | 0.2458 |
4.7516 | 0.6 | 900 | 4.8339 | 0.2559 |
4.5937 | 0.67 | 1000 | 4.7286 | 0.2676 |
4.5079 | 0.73 | 1100 | 4.6293 | 0.2798 |
4.4608 | 0.8 | 1200 | 4.5433 | 0.2903 |
4.3426 | 0.87 | 1300 | 4.4719 | 0.2988 |
4.1722 | 0.93 | 1400 | 4.4089 | 0.3057 |
4.1655 | 1.0 | 1500 | 4.3585 | 0.3107 |
4.0927 | 1.07 | 1600 | 4.3101 | 0.3161 |
4.1439 | 1.13 | 1700 | 4.2714 | 0.3206 |
4.0064 | 1.2 | 1800 | 4.2330 | 0.3249 |
4.0633 | 1.27 | 1900 | 4.2015 | 0.3281 |
3.9948 | 1.33 | 2000 | 4.1702 | 0.3311 |
3.9389 | 1.4 | 2100 | 4.1439 | 0.3338 |
3.8833 | 1.47 | 2200 | 4.1200 | 0.3367 |
3.8411 | 1.53 | 2300 | 4.0949 | 0.3395 |
3.8481 | 1.6 | 2400 | 4.0764 | 0.3408 |
3.8397 | 1.67 | 2500 | 4.0578 | 0.3420 |
3.8897 | 1.73 | 2600 | 4.0383 | 0.3440 |
3.8785 | 1.8 | 2700 | 4.0206 | 0.3459 |
3.8126 | 1.87 | 2800 | 4.0044 | 0.3478 |
3.783 | 1.93 | 2900 | 3.9891 | 0.3498 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.2.0.dev20230907+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 24.7 |
ARC (25-shot) | 21.59 |
HellaSwag (10-shot) | 25.79 |
MMLU (5-shot) | 24.99 |
TruthfulQA (0-shot) | 50.62 |
Winogrande (5-shot) | 48.62 |
GSM8K (5-shot) | 0.0 |
DROP (3-shot) | 1.32 |
- Downloads last month
- 1,406
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.