Model Card for Model ID

Model Details

#!/bin/bash
#SBATCH --job-name="fintune"
#SBATCH  --account=bckr-dtai-gh
#SBATCH --partition=ghx4
#SBATCH --nodes=1
#SBATCH --gpus-per-node=4
#SBATCH --tasks=1
#SBATCH --tasks-per-node=1
#SBATCH --cpus-per-task=20
#SBATCH --mem=512g
#SBATCH --time=23:59:00
#SBATCH --output="run.log"
#SBATCH --error="run.err"

set -e
export WANDB_API_KEY='1b2611814911cad498235f1ccb1a2e182638bd62'

# set up exp1 or exp3!!!!!
# launch this script after bilevel weighting and preparing data
# this script is for exp1 and exp3

# 1. finetune on bilevel and baseline

CUDA_VISIBLE=0,1

hf_ds=pxyyy/NuminaMath-CoT-smp10k
hf_val_ds=pxyyy/NuminaMath-CoT-smp10k
model_and_tok=Qwen/Qwen2.5-7B
# conv_template=llama3
conv_template=qwen2_5_math

hf_ds_str=$(echo ${hf_ds}|sed 's/\//-/g')
tmp_data_dir=./tmp_data/${hf_ds_str}/
val_data_dir=./tmp_data/${hf_ds_str}_val/
mkdir -p ${tmp_data_dir}
mkdir -p ${val_data_dir}
python3 hf2lmflow.py --ds_name ${hf_ds} --save ${tmp_data_dir}/data.json --split train
python3 hf2lmflow.py --ds_name ${hf_val_ds} --save ${val_data_dir}/data.json --split test

model_str=$(echo ${model_and_tok}|sed 's/\//-/g')

gradient_accumulation_steps=4
per_device_train_batch_size=8
epoch=1
project_dir=/u/xpan2/projects/mp-llm/MATH/finetune
for lr in 2e-5
do
    # Finetune
    exp_id=finetune-${model_str}-${hf_ds_str}-${epoch}-$lr
    # project_dir=$(cd "$(dirname $0)"; pwd)
    log_dir=${project_dir}/log/${exp_id}
    output_dir=${project_dir}/output_models/${exp_id}
    
    echo $exp_id
    
    mkdir -p ${output_dir} ${log_dir}

    export TRANSFORMERS_VERBOSITY=info

    deepspeed --master_port=7964 --include=localhost:${CUDA_VISIBLE} finetune.py \
        --model_name_or_path ${model_and_tok} \
        --trust_remote_code 1 \
        --dataset_path ${tmp_data_dir}/ \
        --eval_dataset_path ${val_data_dir}/ \
        --output_dir ${output_dir} --overwrite_output_dir \
        --conversation_template ${conv_template} \
        --num_train_epochs $epoch \
        --learning_rate $lr \
        --disable_group_texts 1 \
        --block_size 512 \
        --per_device_train_batch_size ${per_device_train_batch_size} \
        --per_device_eval_batch_size 1 \
        --bf16 \
        --deepspeed configs/ds_config_zero3_no_offload.json \
        --torch_dtype bfloat16 \
        --run_name ${exp_id} \
        --optim adamw_torch_fused \
        --logging_steps 1 \
        --do_train \
        --do_eval \
        --ddp_timeout 72000 \
        --save_total_limit 1 \
        --load_best_model_at_end False \
        --eval_steps 10 \
        --save_only_model \
        --evaluation_strategy "steps" \
        --dataloader_num_workers 1 \
        --lr_scheduler_type cosine \
        --warmup_ratio 0.03 \
        --gradient_checkpointing True \
        --use_flash_attention 1 \
        --gradient_accumulation_steps ${gradient_accumulation_steps} \
        | tee ${log_dir}/train.log \
        2> ${log_dir}/train.err
done

https://wandb.ai/llm_infoscore/huggingface/runs/58ronlvj

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
8,376
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pxyyy/Qwen2.5-7B-NuminaMath-CoT-smp20k-ep1-2e-5

Quantizations
1 model