Quentin Meeus
trained model
74277cb
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - facebook/voxpopuli
metrics:
  - wer
model-index:
  - name: WhisperForSpokenNER-end2end
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli de+es+fr+nl
          type: facebook/voxpopuli
          split: None
        metrics:
          - type: wer
            value: 0.1421388512860182
            name: Wer

WhisperForSpokenNER-end2end

This model is a fine-tuned version of openai/whisper-small on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3440
  • Combined Wer: 0.2231
  • F1 Score: 0.5368
  • Label F1: 0.6908
  • Wer: 0.1421

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Combined Wer F1 Score Label F1 Wer
1.1583 0.1 500 1.0361 0.3217 0.0746 0.1415 0.2067
0.4069 0.2 1000 0.4111 0.2203 0.4223 0.5940 0.1235
0.3708 0.3 1500 0.3768 0.2201 0.4609 0.6267 0.1295
0.3512 0.4 2000 0.3624 0.2223 0.5142 0.6835 0.1359
0.3411 0.5 2500 0.3543 0.2204 0.5225 0.6883 0.1374
0.3313 1.02 3000 0.3492 0.2235 0.5193 0.6808 0.1398
0.3252 1.12 3500 0.3459 0.2251 0.5333 0.6893 0.1436
0.3293 1.22 4000 0.3447 0.2237 0.5325 0.6860 0.1416
0.321 1.32 4500 0.3443 0.2238 0.5366 0.6905 0.1425
0.3223 1.42 5000 0.3440 0.2231 0.5368 0.6908 0.1421

Framework versions

  • PEFT 0.7.1.dev0
  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1