|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: openai/whisper-small |
|
datasets: |
|
- facebook/voxpopuli |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: WhisperForSpokenNER-end2end |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: facebook/voxpopuli de+es+fr+nl |
|
type: facebook/voxpopuli |
|
split: None |
|
metrics: |
|
- type: wer |
|
value: 0.1421388512860182 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# WhisperForSpokenNER-end2end |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the facebook/voxpopuli de+es+fr+nl dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3440 |
|
- Combined Wer: 0.2231 |
|
- F1 Score: 0.5368 |
|
- Label F1: 0.6908 |
|
- Wer: 0.1421 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Combined Wer | F1 Score | Label F1 | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:------:| |
|
| 1.1583 | 0.1 | 500 | 1.0361 | 0.3217 | 0.0746 | 0.1415 | 0.2067 | |
|
| 0.4069 | 0.2 | 1000 | 0.4111 | 0.2203 | 0.4223 | 0.5940 | 0.1235 | |
|
| 0.3708 | 0.3 | 1500 | 0.3768 | 0.2201 | 0.4609 | 0.6267 | 0.1295 | |
|
| 0.3512 | 0.4 | 2000 | 0.3624 | 0.2223 | 0.5142 | 0.6835 | 0.1359 | |
|
| 0.3411 | 0.5 | 2500 | 0.3543 | 0.2204 | 0.5225 | 0.6883 | 0.1374 | |
|
| 0.3313 | 1.02 | 3000 | 0.3492 | 0.2235 | 0.5193 | 0.6808 | 0.1398 | |
|
| 0.3252 | 1.12 | 3500 | 0.3459 | 0.2251 | 0.5333 | 0.6893 | 0.1436 | |
|
| 0.3293 | 1.22 | 4000 | 0.3447 | 0.2237 | 0.5325 | 0.6860 | 0.1416 | |
|
| 0.321 | 1.32 | 4500 | 0.3443 | 0.2238 | 0.5366 | 0.6905 | 0.1425 | |
|
| 0.3223 | 1.42 | 5000 | 0.3440 | 0.2231 | 0.5368 | 0.6908 | 0.1421 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1.dev0 |
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |