metadata
tags: autotrain
language: en
widget:
- text: I love driving this car
datasets:
- qualitydatalab/autotrain-data-car-review-project
co2_eq_emissions: 0.21529888368377176
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 966432121
- CO2 Emissions (in grams): 0.21529888368377176
Validation Metrics
- Loss: 0.6013365983963013
- Accuracy: 0.737791286727457
- Macro F1: 0.729171012281939
- Micro F1: 0.737791286727457
- Weighted F1: 0.729171012281939
- Macro Precision: 0.7313770127538427
- Micro Precision: 0.737791286727457
- Weighted Precision: 0.7313770127538428
- Macro Recall: 0.737791286727457
- Micro Recall: 0.737791286727457
- Weighted Recall: 0.737791286727457
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love driving this car"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432121
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)