florentgbelidji's picture
Update README.md
f28298b
|
raw
history blame
1.46 kB
metadata
tags: autotrain
language: en
widget:
  - text: I love driving this car
datasets:
  - qualitydatalab/autotrain-data-car-review-project
co2_eq_emissions: 0.21529888368377176

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 966432121
  • CO2 Emissions (in grams): 0.21529888368377176

Validation Metrics

  • Loss: 0.6013365983963013
  • Accuracy: 0.737791286727457
  • Macro F1: 0.729171012281939
  • Micro F1: 0.737791286727457
  • Weighted F1: 0.729171012281939
  • Macro Precision: 0.7313770127538427
  • Micro Precision: 0.737791286727457
  • Weighted Precision: 0.7313770127538428
  • Macro Recall: 0.737791286727457
  • Micro Recall: 0.737791286727457
  • Weighted Recall: 0.737791286727457

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love driving this car"}' https://api-inference.huggingface.co/models/qualitydatalab/autotrain-car-review-project-966432121

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("qualitydatalab/autotrain-car-review-project-966432121", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)