metadata
base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Category: Milk, Buttermilk, Kefir, Goat's milk, Non-dairy milk, Soy milk,
Almond milk, Rice milk, Coconut milk, Yogurt, Chipotle dip, Dill dip,
Onion dip, Ranch dip, Spinach dip, Tzatziki dip, Vegetable dip, Yogurt
parfait, Frozen yogurt, Frozen yogurt sandwich
- text: >-
company.sector: Software, Finance, Communications, pharmaceuticals,
technology, Fashion, real estate, software, banking and insurance,
groceries, construction/real estate/banking, Oil refining, Oil
refining, retail, retail, casinos, food packaging, cars, cosmetics, None
- text: 'variety: Western, Eastern'
- text: >-
Data.Lycopene: 0, 1, 300, 7271, 6399, 4601, 4123, 1523, 1422, 1351, 11,
816, 819, 812, 1001, 769, 1365, 97, 21, 34
- text: 'Date.Month: 8, 3, 4, 5, 6, 7, 9, 10, 11, 12, 1, 2'
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7629716981132075
name: Accuracy
SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L3-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-MiniLM-L3-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 53 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Integer |
|
Country Name |
|
License Plate |
|
Date |
|
Latitude |
|
Month Number |
|
Floating Point Number |
|
Time |
|
Place |
|
Full Name |
|
U.S. State Abbreviation |
|
Price |
|
U.S. State |
|
Gender |
|
Longitude |
|
URL |
|
Day of Week |
|
Slug |
|
Timestamp |
|
Coordinate |
|
Likert scale |
|
Categorical |
|
Secondary Address |
|
Year |
|
Zip Code |
|
Region |
|
AM/PM |
|
Race/Ethnicity |
|
Street Name |
|
Day of Month |
|
Boolean |
|
Color |
|
Location |
|
Last Name |
|
Company Name |
|
Street Address |
|
Short text |
|
Occupation |
|
Very short text |
|
Numeric |
|
URI |
|
Letter grade |
|
Month Name |
|
Age |
|
Partial timestamp |
|
Abbreviation |
|
Country ISO Code |
|
City Name |
|
Continents |
|
Postal Code |
|
Marital status |
|
First Name |
|
Currency Code |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7630 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("quantisan/paraphrase-MiniLM-L3-v2-93dataset-v2labels")
# Run inference
preds = model("variety: Western, Eastern")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 22.1604 | 378 |
Label | Training Sample Count |
---|---|
Categorical | 8 |
Numeric | 8 |
Timestamp | 5 |
Date | 8 |
Integer | 8 |
Partial timestamp | 3 |
Short text | 8 |
Very short text | 3 |
AM/PM | 1 |
Boolean | 8 |
City Name | 4 |
Color | 3 |
Company Name | 1 |
Coordinate | 1 |
Country ISO Code | 3 |
Country Name | 8 |
Currency Code | 1 |
Day of Month | 3 |
Day of Week | 2 |
First Name | 1 |
Floating Point Number | 8 |
Full Name | 8 |
Last Name | 1 |
Latitude | 4 |
License Plate | 1 |
Longitude | 4 |
Month Name | 4 |
Month Number | 4 |
Occupation | 3 |
Postal Code | 1 |
Price | 1 |
Secondary Address | 1 |
Slug | 8 |
Street Address | 1 |
Street Name | 2 |
Time | 1 |
U.S. State | 8 |
U.S. State Abbreviation | 6 |
URI | 1 |
URL | 8 |
Year | 8 |
Zip Code | 3 |
Likert scale | 8 |
Gender | 8 |
Letter grade | 4 |
Race/Ethnicity | 3 |
Marital status | 2 |
Continents | 1 |
Region | 5 |
Age | 3 |
Place | 1 |
Abbreviation | 1 |
Location | 3 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.1497 | - |
0.0092 | 50 | 0.1834 | - |
0.0183 | 100 | 0.1917 | - |
0.0275 | 150 | 0.1712 | - |
0.0366 | 200 | 0.1505 | - |
0.0458 | 250 | 0.146 | - |
0.0549 | 300 | 0.1465 | - |
0.0641 | 350 | 0.1297 | - |
0.0732 | 400 | 0.1238 | - |
0.0824 | 450 | 0.111 | - |
0.0916 | 500 | 0.1035 | - |
0.1007 | 550 | 0.1008 | - |
0.1099 | 600 | 0.0914 | - |
0.1190 | 650 | 0.0869 | - |
0.1282 | 700 | 0.0792 | - |
0.1373 | 750 | 0.0712 | - |
0.1465 | 800 | 0.0709 | - |
0.1556 | 850 | 0.0808 | - |
0.1648 | 900 | 0.0659 | - |
0.1740 | 950 | 0.0611 | - |
0.1831 | 1000 | 0.0611 | - |
0.1923 | 1050 | 0.0607 | - |
0.2014 | 1100 | 0.0611 | - |
0.2106 | 1150 | 0.0507 | - |
0.2197 | 1200 | 0.0577 | - |
0.2289 | 1250 | 0.0508 | - |
0.2381 | 1300 | 0.0399 | - |
0.2472 | 1350 | 0.0442 | - |
0.2564 | 1400 | 0.0516 | - |
0.2655 | 1450 | 0.0441 | - |
0.2747 | 1500 | 0.0472 | - |
0.2838 | 1550 | 0.0284 | - |
0.2930 | 1600 | 0.0492 | - |
0.3021 | 1650 | 0.035 | - |
0.3113 | 1700 | 0.0338 | - |
0.3205 | 1750 | 0.0286 | - |
0.3296 | 1800 | 0.0296 | - |
0.3388 | 1850 | 0.0328 | - |
0.3479 | 1900 | 0.0277 | - |
0.3571 | 1950 | 0.0269 | - |
0.3662 | 2000 | 0.0262 | - |
0.3754 | 2050 | 0.0311 | - |
0.3845 | 2100 | 0.0277 | - |
0.3937 | 2150 | 0.022 | - |
0.4029 | 2200 | 0.0216 | - |
0.4120 | 2250 | 0.0213 | - |
0.4212 | 2300 | 0.0231 | - |
0.4303 | 2350 | 0.0255 | - |
0.4395 | 2400 | 0.02 | - |
0.4486 | 2450 | 0.0181 | - |
0.4578 | 2500 | 0.0196 | - |
0.4669 | 2550 | 0.0182 | - |
0.4761 | 2600 | 0.0199 | - |
0.4853 | 2650 | 0.0171 | - |
0.4944 | 2700 | 0.0171 | - |
0.5036 | 2750 | 0.0169 | - |
0.5127 | 2800 | 0.0161 | - |
0.5219 | 2850 | 0.0104 | - |
0.5310 | 2900 | 0.0133 | - |
0.5402 | 2950 | 0.0137 | - |
0.5493 | 3000 | 0.0241 | - |
0.5585 | 3050 | 0.0156 | - |
0.5677 | 3100 | 0.0155 | - |
0.5768 | 3150 | 0.0158 | - |
0.5860 | 3200 | 0.0165 | - |
0.5951 | 3250 | 0.0141 | - |
0.6043 | 3300 | 0.0129 | - |
0.6134 | 3350 | 0.0129 | - |
0.6226 | 3400 | 0.0103 | - |
0.6318 | 3450 | 0.011 | - |
0.6409 | 3500 | 0.0117 | - |
0.6501 | 3550 | 0.0128 | - |
0.6592 | 3600 | 0.0125 | - |
0.6684 | 3650 | 0.0138 | - |
0.6775 | 3700 | 0.0101 | - |
0.6867 | 3750 | 0.0123 | - |
0.6958 | 3800 | 0.0127 | - |
0.7050 | 3850 | 0.0088 | - |
0.7142 | 3900 | 0.0097 | - |
0.7233 | 3950 | 0.0078 | - |
0.7325 | 4000 | 0.0056 | - |
0.7416 | 4050 | 0.0096 | - |
0.7508 | 4100 | 0.0114 | - |
0.7599 | 4150 | 0.0105 | - |
0.7691 | 4200 | 0.0101 | - |
0.7782 | 4250 | 0.0077 | - |
0.7874 | 4300 | 0.0104 | - |
0.7966 | 4350 | 0.007 | - |
0.8057 | 4400 | 0.0112 | - |
0.8149 | 4450 | 0.008 | - |
0.8240 | 4500 | 0.0063 | - |
0.8332 | 4550 | 0.0153 | - |
0.8423 | 4600 | 0.0081 | - |
0.8515 | 4650 | 0.007 | - |
0.8606 | 4700 | 0.0052 | - |
0.8698 | 4750 | 0.0054 | - |
0.8790 | 4800 | 0.0063 | - |
0.8881 | 4850 | 0.0131 | - |
0.8973 | 4900 | 0.0086 | - |
0.9064 | 4950 | 0.0086 | - |
0.9156 | 5000 | 0.008 | - |
0.9247 | 5050 | 0.0097 | - |
0.9339 | 5100 | 0.0081 | - |
0.9431 | 5150 | 0.0052 | - |
0.9522 | 5200 | 0.008 | - |
0.9614 | 5250 | 0.0055 | - |
0.9705 | 5300 | 0.0048 | - |
0.9797 | 5350 | 0.0055 | - |
0.9888 | 5400 | 0.0064 | - |
0.9980 | 5450 | 0.0043 | - |
1.0 | 5461 | - | 0.0926 |
1.0071 | 5500 | 0.0064 | - |
1.0163 | 5550 | 0.0079 | - |
1.0255 | 5600 | 0.0037 | - |
1.0346 | 5650 | 0.0045 | - |
1.0438 | 5700 | 0.0072 | - |
1.0529 | 5750 | 0.0055 | - |
1.0621 | 5800 | 0.0046 | - |
1.0712 | 5850 | 0.0039 | - |
1.0804 | 5900 | 0.0063 | - |
1.0895 | 5950 | 0.0071 | - |
1.0987 | 6000 | 0.005 | - |
1.1079 | 6050 | 0.0066 | - |
1.1170 | 6100 | 0.0041 | - |
1.1262 | 6150 | 0.0056 | - |
1.1353 | 6200 | 0.0063 | - |
1.1445 | 6250 | 0.0057 | - |
1.1536 | 6300 | 0.004 | - |
1.1628 | 6350 | 0.0058 | - |
1.1719 | 6400 | 0.0067 | - |
1.1811 | 6450 | 0.0058 | - |
1.1903 | 6500 | 0.0081 | - |
1.1994 | 6550 | 0.0062 | - |
1.2086 | 6600 | 0.0062 | - |
1.2177 | 6650 | 0.0034 | - |
1.2269 | 6700 | 0.0031 | - |
1.2360 | 6750 | 0.0048 | - |
1.2452 | 6800 | 0.006 | - |
1.2543 | 6850 | 0.0054 | - |
1.2635 | 6900 | 0.007 | - |
1.2727 | 6950 | 0.0064 | - |
1.2818 | 7000 | 0.0055 | - |
1.2910 | 7050 | 0.0049 | - |
1.3001 | 7100 | 0.0063 | - |
1.3093 | 7150 | 0.0044 | - |
1.3184 | 7200 | 0.0063 | - |
1.3276 | 7250 | 0.003 | - |
1.3368 | 7300 | 0.0049 | - |
1.3459 | 7350 | 0.0047 | - |
1.3551 | 7400 | 0.0043 | - |
1.3642 | 7450 | 0.0023 | - |
1.3734 | 7500 | 0.0025 | - |
1.3825 | 7550 | 0.0047 | - |
1.3917 | 7600 | 0.0027 | - |
1.4008 | 7650 | 0.0036 | - |
1.4100 | 7700 | 0.0026 | - |
1.4192 | 7750 | 0.0019 | - |
1.4283 | 7800 | 0.0048 | - |
1.4375 | 7850 | 0.0047 | - |
1.4466 | 7900 | 0.0041 | - |
1.4558 | 7950 | 0.0073 | - |
1.4649 | 8000 | 0.0023 | - |
1.4741 | 8050 | 0.0054 | - |
1.4832 | 8100 | 0.0042 | - |
1.4924 | 8150 | 0.0078 | - |
1.5016 | 8200 | 0.0063 | - |
1.5107 | 8250 | 0.0033 | - |
1.5199 | 8300 | 0.0055 | - |
1.5290 | 8350 | 0.0043 | - |
1.5382 | 8400 | 0.0027 | - |
1.5473 | 8450 | 0.0021 | - |
1.5565 | 8500 | 0.0022 | - |
1.5656 | 8550 | 0.0063 | - |
1.5748 | 8600 | 0.0049 | - |
1.5840 | 8650 | 0.0049 | - |
1.5931 | 8700 | 0.0057 | - |
1.6023 | 8750 | 0.0035 | - |
1.6114 | 8800 | 0.0022 | - |
1.6206 | 8850 | 0.0029 | - |
1.6297 | 8900 | 0.0062 | - |
1.6389 | 8950 | 0.0022 | - |
1.6480 | 9000 | 0.0047 | - |
1.6572 | 9050 | 0.0024 | - |
1.6664 | 9100 | 0.0053 | - |
1.6755 | 9150 | 0.0021 | - |
1.6847 | 9200 | 0.0029 | - |
1.6938 | 9250 | 0.0031 | - |
1.7030 | 9300 | 0.0024 | - |
1.7121 | 9350 | 0.0034 | - |
1.7213 | 9400 | 0.0021 | - |
1.7305 | 9450 | 0.0025 | - |
1.7396 | 9500 | 0.0023 | - |
1.7488 | 9550 | 0.0029 | - |
1.7579 | 9600 | 0.0025 | - |
1.7671 | 9650 | 0.0021 | - |
1.7762 | 9700 | 0.0019 | - |
1.7854 | 9750 | 0.0034 | - |
1.7945 | 9800 | 0.0016 | - |
1.8037 | 9850 | 0.0019 | - |
1.8129 | 9900 | 0.0024 | - |
1.8220 | 9950 | 0.002 | - |
1.8312 | 10000 | 0.0021 | - |
1.8403 | 10050 | 0.0061 | - |
1.8495 | 10100 | 0.0019 | - |
1.8586 | 10150 | 0.0014 | - |
1.8678 | 10200 | 0.0021 | - |
1.8769 | 10250 | 0.0031 | - |
1.8861 | 10300 | 0.002 | - |
1.8953 | 10350 | 0.0014 | - |
1.9044 | 10400 | 0.0015 | - |
1.9136 | 10450 | 0.0014 | - |
1.9227 | 10500 | 0.0018 | - |
1.9319 | 10550 | 0.0014 | - |
1.9410 | 10600 | 0.0015 | - |
1.9502 | 10650 | 0.0014 | - |
1.9593 | 10700 | 0.0013 | - |
1.9685 | 10750 | 0.0032 | - |
1.9777 | 10800 | 0.0017 | - |
1.9868 | 10850 | 0.0015 | - |
1.9960 | 10900 | 0.0012 | - |
2.0 | 10922 | - | 0.1071 |
2.0051 | 10950 | 0.0013 | - |
2.0143 | 11000 | 0.0013 | - |
2.0234 | 11050 | 0.0015 | - |
2.0326 | 11100 | 0.0013 | - |
2.0418 | 11150 | 0.0013 | - |
2.0509 | 11200 | 0.0011 | - |
2.0601 | 11250 | 0.0013 | - |
2.0692 | 11300 | 0.0013 | - |
2.0784 | 11350 | 0.0034 | - |
2.0875 | 11400 | 0.0012 | - |
2.0967 | 11450 | 0.0012 | - |
2.1058 | 11500 | 0.0025 | - |
2.1150 | 11550 | 0.0026 | - |
2.1242 | 11600 | 0.0031 | - |
2.1333 | 11650 | 0.0012 | - |
2.1425 | 11700 | 0.0011 | - |
2.1516 | 11750 | 0.0013 | - |
2.1608 | 11800 | 0.0012 | - |
2.1699 | 11850 | 0.0013 | - |
2.1791 | 11900 | 0.0011 | - |
2.1882 | 11950 | 0.0011 | - |
2.1974 | 12000 | 0.0012 | - |
2.2066 | 12050 | 0.0014 | - |
2.2157 | 12100 | 0.003 | - |
2.2249 | 12150 | 0.001 | - |
2.2340 | 12200 | 0.0011 | - |
2.2432 | 12250 | 0.0028 | - |
2.2523 | 12300 | 0.0027 | - |
2.2615 | 12350 | 0.0013 | - |
2.2706 | 12400 | 0.0024 | - |
2.2798 | 12450 | 0.0011 | - |
2.2890 | 12500 | 0.001 | - |
2.2981 | 12550 | 0.0011 | - |
2.3073 | 12600 | 0.0011 | - |
2.3164 | 12650 | 0.0029 | - |
2.3256 | 12700 | 0.0029 | - |
2.3347 | 12750 | 0.0009 | - |
2.3439 | 12800 | 0.0013 | - |
2.3530 | 12850 | 0.0009 | - |
2.3622 | 12900 | 0.001 | - |
2.3714 | 12950 | 0.0011 | - |
2.3805 | 13000 | 0.0027 | - |
2.3897 | 13050 | 0.0009 | - |
2.3988 | 13100 | 0.0011 | - |
2.4080 | 13150 | 0.0012 | - |
2.4171 | 13200 | 0.0024 | - |
2.4263 | 13250 | 0.0039 | - |
2.4355 | 13300 | 0.001 | - |
2.4446 | 13350 | 0.0017 | - |
2.4538 | 13400 | 0.0012 | - |
2.4629 | 13450 | 0.0021 | - |
2.4721 | 13500 | 0.0021 | - |
2.4812 | 13550 | 0.0032 | - |
2.4904 | 13600 | 0.0012 | - |
2.4995 | 13650 | 0.0012 | - |
2.5087 | 13700 | 0.0014 | - |
2.5179 | 13750 | 0.001 | - |
2.5270 | 13800 | 0.0011 | - |
2.5362 | 13850 | 0.0009 | - |
2.5453 | 13900 | 0.0034 | - |
2.5545 | 13950 | 0.0015 | - |
2.5636 | 14000 | 0.0013 | - |
2.5728 | 14050 | 0.0069 | - |
2.5819 | 14100 | 0.001 | - |
2.5911 | 14150 | 0.0034 | - |
2.6003 | 14200 | 0.0028 | - |
2.6094 | 14250 | 0.001 | - |
2.6186 | 14300 | 0.0012 | - |
2.6277 | 14350 | 0.0013 | - |
2.6369 | 14400 | 0.0011 | - |
2.6460 | 14450 | 0.0009 | - |
2.6552 | 14500 | 0.001 | - |
2.6643 | 14550 | 0.0009 | - |
2.6735 | 14600 | 0.0012 | - |
2.6827 | 14650 | 0.0041 | - |
2.6918 | 14700 | 0.0008 | - |
2.7010 | 14750 | 0.0019 | - |
2.7101 | 14800 | 0.001 | - |
2.7193 | 14850 | 0.0012 | - |
2.7284 | 14900 | 0.0013 | - |
2.7376 | 14950 | 0.0012 | - |
2.7467 | 15000 | 0.0019 | - |
2.7559 | 15050 | 0.0009 | - |
2.7651 | 15100 | 0.0009 | - |
2.7742 | 15150 | 0.0008 | - |
2.7834 | 15200 | 0.0028 | - |
2.7925 | 15250 | 0.0009 | - |
2.8017 | 15300 | 0.0011 | - |
2.8108 | 15350 | 0.0029 | - |
2.8200 | 15400 | 0.0008 | - |
2.8292 | 15450 | 0.001 | - |
2.8383 | 15500 | 0.0019 | - |
2.8475 | 15550 | 0.0011 | - |
2.8566 | 15600 | 0.0022 | - |
2.8658 | 15650 | 0.0011 | - |
2.8749 | 15700 | 0.0009 | - |
2.8841 | 15750 | 0.0008 | - |
2.8932 | 15800 | 0.0009 | - |
2.9024 | 15850 | 0.0009 | - |
2.9116 | 15900 | 0.0011 | - |
2.9207 | 15950 | 0.0011 | - |
2.9299 | 16000 | 0.0017 | - |
2.9390 | 16050 | 0.001 | - |
2.9482 | 16100 | 0.0008 | - |
2.9573 | 16150 | 0.0009 | - |
2.9665 | 16200 | 0.0008 | - |
2.9756 | 16250 | 0.0009 | - |
2.9848 | 16300 | 0.0007 | - |
2.9940 | 16350 | 0.0011 | - |
3.0 | 16383 | - | 0.0990 |
3.0031 | 16400 | 0.0008 | - |
3.0123 | 16450 | 0.0008 | - |
3.0214 | 16500 | 0.0008 | - |
3.0306 | 16550 | 0.0008 | - |
3.0397 | 16600 | 0.0015 | - |
3.0489 | 16650 | 0.0007 | - |
3.0580 | 16700 | 0.0008 | - |
3.0672 | 16750 | 0.0009 | - |
3.0764 | 16800 | 0.0008 | - |
3.0855 | 16850 | 0.0008 | - |
3.0947 | 16900 | 0.0023 | - |
3.1038 | 16950 | 0.0007 | - |
3.1130 | 17000 | 0.0006 | - |
3.1221 | 17050 | 0.0024 | - |
3.1313 | 17100 | 0.0008 | - |
3.1405 | 17150 | 0.0017 | - |
3.1496 | 17200 | 0.0011 | - |
3.1588 | 17250 | 0.0008 | - |
3.1679 | 17300 | 0.0008 | - |
3.1771 | 17350 | 0.0007 | - |
3.1862 | 17400 | 0.0014 | - |
3.1954 | 17450 | 0.0008 | - |
3.2045 | 17500 | 0.0007 | - |
3.2137 | 17550 | 0.0007 | - |
3.2229 | 17600 | 0.0006 | - |
3.2320 | 17650 | 0.0007 | - |
3.2412 | 17700 | 0.0021 | - |
3.2503 | 17750 | 0.0006 | - |
3.2595 | 17800 | 0.0006 | - |
3.2686 | 17850 | 0.0007 | - |
3.2778 | 17900 | 0.0006 | - |
3.2869 | 17950 | 0.0008 | - |
3.2961 | 18000 | 0.0008 | - |
3.3053 | 18050 | 0.0008 | - |
3.3144 | 18100 | 0.0027 | - |
3.3236 | 18150 | 0.0008 | - |
3.3327 | 18200 | 0.0007 | - |
3.3419 | 18250 | 0.0007 | - |
3.3510 | 18300 | 0.0008 | - |
3.3602 | 18350 | 0.0007 | - |
3.3693 | 18400 | 0.0022 | - |
3.3785 | 18450 | 0.0007 | - |
3.3877 | 18500 | 0.0014 | - |
3.3968 | 18550 | 0.0006 | - |
3.4060 | 18600 | 0.0016 | - |
3.4151 | 18650 | 0.0007 | - |
3.4243 | 18700 | 0.0015 | - |
3.4334 | 18750 | 0.0006 | - |
3.4426 | 18800 | 0.001 | - |
3.4517 | 18850 | 0.0008 | - |
3.4609 | 18900 | 0.0008 | - |
3.4701 | 18950 | 0.0007 | - |
3.4792 | 19000 | 0.0015 | - |
3.4884 | 19050 | 0.0007 | - |
3.4975 | 19100 | 0.0006 | - |
3.5067 | 19150 | 0.0007 | - |
3.5158 | 19200 | 0.0014 | - |
3.5250 | 19250 | 0.0006 | - |
3.5342 | 19300 | 0.0011 | - |
3.5433 | 19350 | 0.0008 | - |
3.5525 | 19400 | 0.0007 | - |
3.5616 | 19450 | 0.0008 | - |
3.5708 | 19500 | 0.0021 | - |
3.5799 | 19550 | 0.0007 | - |
3.5891 | 19600 | 0.0007 | - |
3.5982 | 19650 | 0.0006 | - |
3.6074 | 19700 | 0.0007 | - |
3.6166 | 19750 | 0.0007 | - |
3.6257 | 19800 | 0.0007 | - |
3.6349 | 19850 | 0.001 | - |
3.6440 | 19900 | 0.0011 | - |
3.6532 | 19950 | 0.0007 | - |
3.6623 | 20000 | 0.0006 | - |
3.6715 | 20050 | 0.0022 | - |
3.6806 | 20100 | 0.0011 | - |
3.6898 | 20150 | 0.0007 | - |
3.6990 | 20200 | 0.0006 | - |
3.7081 | 20250 | 0.0007 | - |
3.7173 | 20300 | 0.0006 | - |
3.7264 | 20350 | 0.0006 | - |
3.7356 | 20400 | 0.0013 | - |
3.7447 | 20450 | 0.0009 | - |
3.7539 | 20500 | 0.0006 | - |
3.7630 | 20550 | 0.001 | - |
3.7722 | 20600 | 0.0007 | - |
3.7814 | 20650 | 0.0007 | - |
3.7905 | 20700 | 0.0006 | - |
3.7997 | 20750 | 0.0006 | - |
3.8088 | 20800 | 0.0015 | - |
3.8180 | 20850 | 0.0009 | - |
3.8271 | 20900 | 0.0009 | - |
3.8363 | 20950 | 0.0005 | - |
3.8454 | 21000 | 0.0008 | - |
3.8546 | 21050 | 0.0006 | - |
3.8638 | 21100 | 0.0008 | - |
3.8729 | 21150 | 0.0006 | - |
3.8821 | 21200 | 0.0006 | - |
3.8912 | 21250 | 0.0005 | - |
3.9004 | 21300 | 0.0006 | - |
3.9095 | 21350 | 0.0015 | - |
3.9187 | 21400 | 0.0017 | - |
3.9279 | 21450 | 0.0006 | - |
3.9370 | 21500 | 0.0007 | - |
3.9462 | 21550 | 0.0014 | - |
3.9553 | 21600 | 0.0012 | - |
3.9645 | 21650 | 0.0017 | - |
3.9736 | 21700 | 0.0008 | - |
3.9828 | 21750 | 0.0006 | - |
3.9919 | 21800 | 0.0006 | - |
4.0 | 21844 | - | 0.1004 |
Framework Versions
- Python: 3.11.10
- SetFit: 1.1.0
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu124
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}