license: other
library_name: transformers
base_model: nvidia/Mistral-NeMo-Minitron-8B-Base
datasets:
- teknium/OpenHermes-2.5
pipeline_tag: text-generation
license_name: nvidia-open-model-license
license_link: >-
https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
model-index:
- name: Mistral-NeMo-Minitron-8B-Chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 44.52
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.04
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.76
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.94
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 15.6
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=rasyosef/Mistral-NeMo-Minitron-8B-Chat
name: Open LLM Leaderboard
Mistral-NeMo-Minitron-8B-Chat
This is an instruction-tuned version of nvidia/Mistral-NeMo-Minitron-8B-Base that has underwent supervised fine-tuning with 32k instruction-response pairs from the teknium/OpenHermes-2.5 dataset.
How to use
Chat Format
Given the nature of the training data, the Mistral-NeMo-Minitron-8B chat model is best suited for prompts using the chat format as follows. You can provide the prompt as a question with a generic template as follows:
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Question?<|im_end|>
<|im_start|>assistant
For example:
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
How to explain Internet for a medieval knight?<|im_end|>
<|im_start|>assistant
where the model generates the text after <|im_start|>assistant
.
Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model_id = "rasyosef/Mistral-NeMo-Minitron-8B-Chat"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 256,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
Note: If you want to use flash attention, call AutoModelForCausalLM.from_pretrained() with attn_implementation="flash_attention_2"
Benchmarks
These benchmarks were run using EleutherAI's lm-evaluation-harness
- IFEval (Instruction Following Evaluation): IFEval is a fairly interesting dataset that tests the capability of models to clearly follow explicit instructions, such as “include keyword x” or “use format y”. The models are tested on their ability to strictly follow formatting instructions rather than the actual contents generated, allowing strict and rigorous metrics to be used.
- Score: 45.83
Demo
Here's a colab notebook with a chat interface, you can use this to interact with the chat model.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 17.22 |
IFEval (0-Shot) | 44.52 |
BBH (3-Shot) | 26.04 |
MATH Lvl 5 (4-Shot) | 0.76 |
GPQA (0-shot) | 3.47 |
MuSR (0-shot) | 12.94 |
MMLU-PRO (5-shot) | 15.60 |