bert-medium-amharic

This model has the same architecture as bert-medium and was pretrained from scratch using the Amharic subsets of the oscar, mc4, and amharic-sentences-corpus datasets, on a total of 290 Million tokens. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 28k. It achieves the following results on the evaluation set:

  • Loss: 2.62
  • Perplexity: 13.74

Even though this model only has 40.5 Million parameters, its performance is comparable to the 7x larger 279 Million parameter xlm-roberta-base multilingual model on the same Amharic evaluation set.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='rasyosef/bert-medium-amharic')
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ [MASK] ተቆጥሯል።")

[{'score': 0.5135582089424133,
  'token': 9345,
  'token_str': 'ዓመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል ።'},
 {'score': 0.2923661470413208,
  'token': 9617,
  'token_str': 'ዓመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል ።'},
 {'score': 0.09527599066495895,
  'token': 9913,
  'token_str': 'አመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል ።'},
 {'score': 0.06960058212280273,
  'token': 10898,
  'token_str': 'አመታት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል ።'},
 {'score': 0.019061630591750145,
  'token': 28157,
  'token_str': '##ዓመት',
  'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተዓመት ተቆጥሯል ።'}]

Finetuning

This model was finetuned and evaluated on the following Amharic NLP tasks

Finetuned Model Performance

The reported F1 scores are macro averages.

Model Size (# params) Perplexity Sentiment (F1) Named Entity Recognition (F1)
bert-medium-amharic 40.5M 13.74 0.83 0.68
bert-small-amharic 27.8M 15.96 0.83 0.68
bert-mini-amharic 10.7M 22.42 0.81 0.64
bert-tiny-amharic 4.18M 71.52 0.79 0.54
xlm-roberta-base 279M 0.83 0.73
am-roberta 443M 0.82 0.69
Downloads last month
175
Safetensors
Model size
40.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train rasyosef/bert-medium-amharic

Collection including rasyosef/bert-medium-amharic