Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

MAIN_SCRIPT_MODULE (common_module)

import atexit import nltk import pyttsx3 import spacy import speech_recognition as sr import torch from transformers import GPTNeoForCausalLM, AutoTokenizer from nltk.sentiment import SentimentIntensityAnalyzer import os import json from memory_module import MemoryModule from sentiment_module import SentimentAnalysisModule

Get the current directory

current_directory = os.getcwd()

Get a list of files and directories in the current directory

file_list = os.listdir(current_directory)

Print the list

for file_name in file_list: print(file_name)

sia = SentimentIntensityAnalyzer() sentence = "This is a positive sentence." sentiment = sia.polarity_scores(sentence)

Access sentiment scores

compound_score = sentiment['compound'] positive_score = sentiment['pos'] negative_score = sentiment['neg']

model_directory = "EleutherAI/gpt-neo-125m"

Download necessary NLTK resources

nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords')

Check if GPU is available and set the device accordingly

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): current_device = torch.cuda.current_device() print(f"Using GPU: {torch.cuda.get_device_name(current_device)}") else: print("No GPU available, using CPU.")

Initialize the speech engine

speech_engine = pyttsx3.init()

Get the list of available voices

voices = speech_engine.getProperty('voices') for voice in voices: print(voice.id, voice.name)

Set the desired voice

desired_voice = "Microsoft Hazel Desktop - English (Great Britain)" voice_id = None

Find the voice ID based on the desired voice name

for voice in voices: if desired_voice in voice.name: voice_id = voice.id break

if voice_id: speech_engine.setProperty('voice', voice_id) print("Desired voice set successfully.") else: print("Desired voice not found.")

Load the spaCy English model

nlp = spacy.load('en_core_web_sm')

Update the CommonModule instantiation

load_memory_file = "load_memory.json" save_memory_file = "save_memory.json"

class CommonModule: def init(self, model, name, param1, param2, load_memory_file, save_memory_file): # Initialize the instance variables using the provided arguments self.memory = [] # Initialize memory as a list self.name = name self.param1 = param1 self.param2 = param2 self.model = GPTNeoForCausalLM.from_pretrained(model_directory)

    self.tokenizer = AutoTokenizer.from_pretrained(model_directory)
    self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
    self.gpt3_model = GPTNeoForCausalLM.from_pretrained(model_directory)
    self.gpt3_model.to(device)  # Move model to the device (GPU or CPU)

    self.load_memory_file = "C:\\Users\\withe\\PycharmProjects\\no hope2\\Chat_Bot4\\load_memory.json"
    self.save_memory_file = "C:\\Users\\withe\\PycharmProjects\\no hope2\\Chat_Bot4\\save_memory.json"
    self.memory_module = MemoryModule(self.load_memory_file, self.save_memory_file)

    self.sentiment_module = SentimentAnalysisModule()
    self.speech_engine = speech_engine  # Assign the initialized speech engine

    self.max_sequence_length = 200  # Decrease the value for faster response
    self.num_beams = 4  # Reduce the value for faster response
    self.no_repeat_ngram_size = 2
    self.temperature = 0.3
    self.response_cache = {}  # Cache for storing frequently occurring responses

    # Initialize speech recognition
    self.recognizer = sr.Recognizer()



def reset_conversation(self):
    self.memory_module.reset_memory()

def retrieve_cached_response(self, input_text):
    named_entities = self.memory_module.get_named_entities()
    for entity in named_entities:
        if entity.lower() in input_text.lower():
            return self.response_cache.get(entity)
    return None

def generate_gpt2_response(self, input_text, conversation_history):
    # Prepare the conversation history for GPT-2 input format
    if len(conversation_history) == 0:
        gpt2_input = "USER: " + input_text + "\n"
    else:
        gpt2_input = "USER: " + conversation_history[-1] + "\n"  # Append the user's query
        gpt2_input += "BOT: " + conversation_history[-2] + "\n"  # Append the bot's previous response

        # Append the rest of the conversation history in reverse order
        for i in range(len(conversation_history) - 3, -1, -2):
            gpt2_input += "USER: " + conversation_history[i] + "\n"
            gpt2_input += "BOT: " + conversation_history[i - 1] + "\n"

        # Append the current user input to the conversation history
        gpt2_input += "USER: " + input_text + "\n"

    # Tokenize the input text
    input_ids = self.tokenizer.encode(gpt2_input, return_tensors='pt')

    # Generate response using the GPT-2 model
    with torch.no_grad():
        output = self.model.generate(input_ids, max_length=100, num_return_sequences=1)

    # Decode the generated response
    generated_text = self.tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)

    # Process the GPT-2 response
    response = generated_text.strip().split("\n")[-1]  # Extract the last line (bot's response)
    return response

def process_input(self, input_text, conversation_history):
    named_entities = list(self.memory_module.get_named_entities())
    for entity in named_entities:
        if entity in input_text:
            response = self.generate_gpt2_response(input_text, conversation_history)
            self.memory_module.add_to_memory(response)
            return response

    # Check if the input contains a question
    if '?' in input_text:
        return "You're making me angry, you wouldn't like me when I'm angry."

    # Check if the input is a greeting
    greetings = ['hello', 'hi', 'hey', 'hola']
    for greeting in greetings:
        if greeting in input_text.lower():
            return "Hello! How can I assist you today?"

    # Check if the input is a statement about the model
    if self.name.lower() in input_text.lower():
        return "Yes, I am {}. How can I assist you today?".format(self.name)

    # Check if the input is a statement about the creator
    if 'creator' in input_text.lower():
        return "I was created by {}.".format(self.param1)

    # Check if the input is a sentiment analysis request
    if 'sentiment' in input_text.lower():
        sentiment = self.sentiment_module.analyze_sentiment(input_text)
        if sentiment == 'positive':
            return "The sentiment of the text is positive."
        elif sentiment == 'negative':
            return "The sentiment of the text is negative."
        else:
            return "The sentiment of the text is neutral."

    # Retrieve a cached response if available
    cached_response = self.retrieve_cached_response(input_text)
    if cached_response:
        return cached_response

    # Generate a response using GPT-2
    response = self.generate_gpt2_response(input_text, conversation_history)

    # Update the conversation history and cache the response
    conversation_history.append(input_text)
    conversation_history.append(response)
    self.response_cache[input_text] = response

    # Update memory with the generated response
    self.memory_module.add_to_memory(response)

    return response

common_module = CommonModule(model_directory, "Chatbot", "John Doe", "Jane Smith", load_memory_file, save_memory_file)

def text_to_speech(text): common_module.speech_engine.say(text) common_module.speech_engine.runAndWait()

def exit_handler(): common_module.reset_conversation()

atexit.register(exit_handler)

recognizer = sr.Recognizer()

while True: with sr.Microphone() as source: print("Listening...") audio = recognizer.listen(source)

try:
    user_input = recognizer.recognize_google(audio)
    print("User:", user_input)
except sr.UnknownValueError:
    print("Sorry, I could not understand your speech.")
    continue
except sr.RequestError:
    print("Sorry, the speech recognition service is currently unavailable.")
    continue

response = common_module.process_input(user_input, [])
print("Bot:", response)
text_to_speech(response)



MEMORY_MODULE

import json import spacy

Load the spaCy English model

nlp = spacy.load('en_core_web_sm')

class MemoryModule: def init(self, load_file, save_file): self.memory = [] self.load_file = load_file self.save_file = save_file self.load_memory()

def add_to_memory(self, statement):
    self.memory.append(statement)
    self.save_memory()

def reset_memory(self):
    self.memory = []
    self.save_memory()

def save_memory(self):
    with open(self.save_file, 'w') as file:
        json.dump(self.memory, file)

def load_memory(self):
    try:
        with open(self.load_file, 'r') as file:
            loaded_memory = json.load(file)
            if isinstance(loaded_memory, list):
                self.memory = loaded_memory
            else:
                print("Loaded memory is not a list. Starting with an empty memory.")
    except FileNotFoundError:
        print("Load memory file not found. Starting with an empty memory.")

def get_named_entities(self):
    named_entities = set()
    for statement in self.memory:
        doc = nlp(statement)
        for entity in doc.ents:
            if entity.label_:
                named_entities.add(entity.text)
    return named_entities

memory_module = MemoryModule( r"C:\Users\withe\PycharmProjects\no hope2\Chat_Bot4\load_memory.json", r"C:\Users\withe\PycharmProjects\no hope2\Chat_Bot4\save_memory.json" )

SENTIMENT_MODULE

class SentimentAnalysisModule: def init(self): self.sia = SentimentIntensityAnalyzer()

def analyze_sentiment(self, text):
    sentiment = self.sia.polarity_scores(text)
    compound_score = sentiment['compound']
    if compound_score >= 0.05:
        return 'positive'
    elif compound_score <= -0.05:
        return 'negative'
    else:
        return 'neutral'
Downloads last month
29
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.