Model Card of research-backup/t5-base-tweetqa-qag-np

This model is fine-tuned version of t5-base for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg. This model is fine-tuned without a task prefix.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="research-backup/t5-base-tweetqa-qag-np")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "research-backup/t5-base-tweetqa-qag-np")
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 90.8 default lmqg/qag_tweetqa
Bleu_1 40.49 default lmqg/qag_tweetqa
Bleu_2 27.77 default lmqg/qag_tweetqa
Bleu_3 19.18 default lmqg/qag_tweetqa
Bleu_4 13.4 default lmqg/qag_tweetqa
METEOR 31.14 default lmqg/qag_tweetqa
MoverScore 62.26 default lmqg/qag_tweetqa
QAAlignedF1Score (BERTScore) 92.4 default lmqg/qag_tweetqa
QAAlignedF1Score (MoverScore) 64.83 default lmqg/qag_tweetqa
QAAlignedPrecision (BERTScore) 92.78 default lmqg/qag_tweetqa
QAAlignedPrecision (MoverScore) 65.68 default lmqg/qag_tweetqa
QAAlignedRecall (BERTScore) 92.03 default lmqg/qag_tweetqa
QAAlignedRecall (MoverScore) 64.07 default lmqg/qag_tweetqa
ROUGE_L 37.23 default lmqg/qag_tweetqa

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_tweetqa
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: t5-base
  • max_length: 256
  • max_length_output: 128
  • epoch: 15
  • batch: 32
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 2
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train research-backup/t5-base-tweetqa-qag-np

Evaluation results

  • BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    13.400
  • ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    37.230
  • METEOR (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    31.140
  • BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    90.800
  • MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    62.260
  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.400
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.030
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    92.780
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    64.830
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    64.070