Llama 3 portuguese Tom cat 8b instruct GGUF
This model was trained with a superset of 300,000 chat in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Tom cat 8b instruct , the model was adjusted mainly for chat.
!git lfs install
!pip install langchain
!pip install langchain-community langchain-core
!pip install llama-cpp-python
!git clone https://huggingface.co/rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct-q8-gguf/
def llamacpp():
from langchain.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
llm = LlamaCpp(
model_path="/content/Llama-3-portuguese-Tom-cat-8b-instruct-q8-gguf",
n_gpu_layers=40,
n_batch=512,
verbose=True,
)
template = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.<|eot_id|><|start_header_id|>user<|end_header_id|>
{ question }<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4?"
response = llm_chain.run({"question": question})
print(response)
Comments
Any idea, help or report will always be welcome.
email: rhaymisoncristian@gmail.com
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for rhaymison/Llama-3-portuguese-Tom-cat-8b-instruct-q8-gguf
Base model
meta-llama/Meta-Llama-3-8B-Instruct