Mistral-8x7b-Quantized-portuguese-luanaa
This model was trained with a superset of 300,000 instructions in Portuguese. The model comes to help fill the gap in models in Portuguese. Tuned from the Mistral 8x7b and quantized in 4bit for Portuguese, the model was adjusted mainly for instructional tasks.
How to use
A100 GPU
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches. Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response. Important points like these help models (even smaller models like 7b) to perform much better.
!pip install -q -U transformers
!pip install -q -U accelerate
!pip install -q -U bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model = AutoModelForCausalLM.from_pretrained("rhaymison/Mistral-8x7b-Quantized-portuguese-luana", device_map= {"": 0})
tokenizer = AutoTokenizer.from_pretrained("rhaymison/Mistral-8x7b-Quantized-portuguese-luana")
model.eval()
You can use with Pipeline but in this example i will use such as Streaming
inputs = tokenizer([f"""<s>[INST] Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto.
Escreva uma resposta que complete adequadamente o pedido.
### instrução: aja como um professor de matemática e me explique porque 2 + 2 = 4.
[/INST]"""], return_tensors="pt")
inputs.to(model.device)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization. For the complete model in colab you will need the A100. If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
4bits example
from transformers import BitsAndBytesConfig
import torch
nb_4bit_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
quantization_config=bnb_config,
device_map={"": 0}
)
LangChain
Extracting a langChain conversation with a drug petition document as context.
Human: Bom dia. Me informe quais medicamentos são solicitados no texto. Informe também a posologia e o período de tratamento.
Luana: Olá! No texto são solicitados os medicamentos DULOXETINA 30mg,PREGABALINA 100mg ROSUVASTATINA 10mg. A posologia e o período de tratamento não são especificados, pois isso deve ser indicado periodicamente pelo médico.
Human: Perfeito. E qual é o valor da causa informado no documento?
Luana: O valor da causa informado no documento é R$ 6.132,00 (seis mil cento e três).
Human: Foi mencionado no texto alguma lei?
Luana: Sim, a Lei Complementar nº 80/94 é mencionada no texto. Ela se refere às prerrogativas institucionais da Defensoria Pública, incluindo a intimação pessoal de seus membros, a contagem em dobro dos prazos processuais, a manifestação por cotas nos autos e a dispensa da procuração.
Human: Perfeito! Muito obrigado pela ajuda. Por hora é somente isso =]
Luana: Foi um prazer ajudar! Se você tiver outras dúvidas ou necessitar de mais informações, não hesite em perguntar. Tenha um bom dia!
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 66.05 |
ENEM Challenge (No Images) | 69.63 |
BLUEX (No Images) | 59.11 |
OAB Exams | 49.61 |
Assin2 RTE | 61.21 |
Assin2 STS | 79.95 |
FaQuAD NLI | 78.60 |
HateBR Binary | 72.42 |
PT Hate Speech Binary | 73.01 |
tweetSentBR | 50.90 |
Comments
Any idea, help or report will always be welcome.
email: rhaymisoncristian@gmail.com
- Downloads last month
- 438
Model tree for rhaymison/Mistral-8x7b-Quantized-portuguese-luana
Base model
mistralai/Mixtral-8x7B-v0.1Dataset used to train rhaymison/Mistral-8x7b-Quantized-portuguese-luana
Space using rhaymison/Mistral-8x7b-Quantized-portuguese-luana 1
Evaluation results
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard69.630
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard59.110
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard49.610
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard61.210
- pearson on Assin2 STStest set Open Portuguese LLM Leaderboard79.950
- f1-macro on FaQuAD NLItest set Open Portuguese LLM Leaderboard78.600
- f1-macro on HateBR Binarytest set Open Portuguese LLM Leaderboard72.420
- f1-macro on PT Hate Speech Binarytest set Open Portuguese LLM Leaderboard73.010
- f1-macro on tweetSentBRtest set Open Portuguese LLM Leaderboard50.900