metadata
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama2
datasets:
- mc4
- cc100
- oscar
- wikipedia
- EleutherAI/pile
language:
- ja
- en
tags:
- gptq
inference: false
base_model: rinna/youri-7b
base_model_relation: quantized
rinna/youri-7b-gptq
Overview
rinna/youri-7b-gptq
is the quantized model for rinna/youri-7b
using AutoGPTQ. The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference.
Library
Refer to the original model for library details.
Model architecture
Refer to the original model for architecture details.
Continual pre-training
Refer to the original model for pre-training details.
Contributors
Benchmarking
Please refer to rinna's LM benchmark page.
How to use the model
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b-gptq")
model = AutoGPTQForCausalLM.from_quantized("rinna/youri-7b-gptq", use_safetensors=True)
text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
input_ids=token_ids.to(model.device),
max_new_tokens=200,
min_new_tokens=200,
do_sample=True,
temperature=1.0,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
Tokenization
The model uses the original llama-2 tokenizer.
How to cite
@misc{rinna-youri-7b-gptq,
title = {rinna/youri-7b-gptq},
author = {Wakatsuki, Toshiaki and Zhao, Tianyu and Sawada, Kei},
url = {https://huggingface.co/rinna/youri-7b-gptq}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}