|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: llama2 |
|
datasets: |
|
- mc4 |
|
- cc100 |
|
- oscar |
|
- wikipedia |
|
- EleutherAI/pile |
|
language: |
|
- ja |
|
- en |
|
tags: |
|
- gptq |
|
inference: false |
|
base_model: rinna/youri-7b |
|
base_model_relation: quantized |
|
--- |
|
|
|
# `rinna/youri-7b-gptq` |
|
|
|
![rinna-icon](./rinna.png) |
|
|
|
# Overview |
|
`rinna/youri-7b-gptq` is the quantized model for [`rinna/youri-7b`](https://huggingface.co/rinna/youri-7b) using AutoGPTQ. The quantized version is 4x smaller than the original model and thus requires less memory and provides faster inference. |
|
|
|
* **Library** |
|
|
|
Refer to the [original model](https://huggingface.co/rinna/youri-7b) for library details. |
|
|
|
* **Model architecture** |
|
|
|
Refer to the [original model](https://huggingface.co/rinna/youri-7b) for architecture details. |
|
|
|
* **Continual pre-training** |
|
|
|
Refer to the [original model](https://huggingface.co/rinna/youri-7b) for pre-training details. |
|
|
|
* **Contributors** |
|
|
|
- [Toshiaki Wakatsuki](https://huggingface.co/t-w) |
|
- [Tianyu Zhao](https://huggingface.co/tianyuz) |
|
- [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html). |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
import torch |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b-gptq") |
|
model = AutoGPTQForCausalLM.from_quantized("rinna/youri-7b-gptq", use_safetensors=True) |
|
|
|
text = "西田幾多郎は、" |
|
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate( |
|
input_ids=token_ids.to(model.device), |
|
max_new_tokens=200, |
|
min_new_tokens=200, |
|
do_sample=True, |
|
temperature=1.0, |
|
top_p=0.95, |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
output = tokenizer.decode(output_ids.tolist()[0]) |
|
print(output) |
|
~~~~ |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original llama-2 tokenizer. |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-youri-7b-gptq, |
|
title = {rinna/youri-7b-gptq}, |
|
author = {Wakatsuki, Toshiaki and Zhao, Tianyu and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/youri-7b-gptq} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
--- |
|
|
|
# License |
|
[The llama2 license](https://ai.meta.com/llama/license/) |