ryantaw's picture
End of training
06c86f6
|
raw
history blame
2.12 kB
metadata
license: mit
base_model: ryantaw/bert-small-finetuned
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-finetuned-finetuned
    results: []

bert-small-finetuned-finetuned

This model is a fine-tuned version of ryantaw/bert-small-finetuned on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8577
  • Accuracy: 0.6846
  • F1 Score: 0.6854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
No log 1.0 186 0.8402 0.6577 0.6553
No log 2.0 372 0.8577 0.6846 0.6854
0.7061 3.0 558 0.9049 0.6415 0.6367
0.7061 4.0 744 0.9252 0.6631 0.6625
0.7061 5.0 930 1.0010 0.6685 0.6670
0.3613 6.0 1116 1.1754 0.6199 0.6130
0.3613 7.0 1302 1.2138 0.6604 0.6592
0.3613 8.0 1488 1.3055 0.6604 0.6583
0.1426 9.0 1674 1.3710 0.6523 0.6495
0.1426 10.0 1860 1.3899 0.6550 0.6529

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1