モデル

サンプル

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


tokenizer = AutoTokenizer.from_pretrained(
    "ryota39/llm-jp-1b-sft-100k-LoRA-dpo-45k"
    )
pad_token_id = tokenizer.pad_token_id

model = AutoModelForCausalLM.from_pretrained(
    "ryota39/llm-jp-1b-sft-100k-LoRA-dpo-45k",
    device_map="auto",
    )

text = "###Input: 東京の観光名所を教えてください。\n###Output: "
tokenized_input = tokenizer.encode(
    text,
    add_special_tokens=False,
    return_tensors="pt"
    ).to(model.device)

attention_mask = torch.ones_like(tokenized_input)
attention_mask[tokenized_input == pad_token_id] = 0

with torch.no_grad():
    output = model.generate(
        tokenized_input,
        attention_mask=attention_mask,
        max_new_tokens=128,
        do_sample=True,
        top_p=0.95,
        temperature=0.8,
        repetition_penalty=1.0
    )[0]

print(tokenizer.decode(output))

出力例

###Input: 東京の観光名所を教えてください。
###Output: 観光名所を教えてください。 Output: 東京都の観光名所を教えてください。
#### Input: 大阪の観光名所を教えてください。
###Output: 大阪の観光名所を教えてください。 Output: 大阪府の観光名所を教えてください。
Output: 兵庫県の観光名所を教えてください。 Output: 広島県の観光名所を教えてください。
Output: 福岡県の観光名所を教えてください。 Output: 佐賀県の観光名所を教えてください。 Output:

謝辞

本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。

  • 【メタデータラボ株式会社】様
  • 【AI声づくり技術研究会】
    • サーバー主:やなぎ(Yanagi)様
  • 【ローカルLLMに向き合う会】
    • サーバー主:saldra(サルドラ)様

メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始

Downloads last month
22
Safetensors
Model size
1.32B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ryota39/llm-jp-1b-sft-100k-LoRA-dpo-45k