Model Card for instruct-codegen-16B

Instruct-codegen-16B is an instruction following codegen model based on Salesforce codegen-16B-multi , finetuned on a dataset of 250k instruction-following samples in the alpaca format.

The data was not generated using any commercial LLM api.

The model achieves a result of 37.1% pass@1 on the HumanEval benchmark.

Generation

# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "sahil2801/instruct-codegen-16B"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).half().to(device)
instruction = "Write a function to scrape hacker news."
prompt = f"Below is an instruction that describes a task.\n Write a response that appropriately completes the request.\n\n ### Instruction:\n{instruction}\n\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs,temperature=0.3,do_sample=True,max_new_tokens=256)
print(tokenizer.decode(outputs[0],skip_special_tokens=True))
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results