gemma2-9b-sft

base_model: gemma2_9b gemma2 27bにより生成したself instructデータ10kによりinstrution tuningを実施

Eval

elyza-task-100

Use

model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            device_map="auto"  # GPU自動割り当て
        )

tokenizer = AutoTokenizer.from_pretrained(model_name)

messages_list = [
  [
    {"role": "user", "content": "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。"}
  ]
]

prompts = [self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) for messages in messages_list]
        
inputs = self.tokenizer(prompts, return_tensors="pt", padding=True).to(self.model.device)

outputs = self.model.generate(
    **inputs,
    temperature=self.generate_configs["temperature"],
    max_new_tokens=self.generate_configs["max_new_tokens"],
    top_p=self.generate_configs["top_p"],
    top_k=self.generate_configs["top_k"],
    repetition_penalty=self.generate_configs["repetition_penalty"],
    pad_token_id=self.tokenizer.pad_token_id,
    eos_token_id=self.tokenizer.eos_token_id,
)

print(outputs)
Downloads last month
10
Safetensors
Model size
9.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.