gemma2-9b-sft
base_model: gemma2_9b gemma2 27bにより生成したself instructデータ10kによりinstrution tuningを実施
Eval
elyza-task-100
Use
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto" # GPU自動割り当て
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages_list = [
[
{"role": "user", "content": "仕事の熱意を取り戻すためのアイデアを5つ挙げてください。"}
]
]
prompts = [self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) for messages in messages_list]
inputs = self.tokenizer(prompts, return_tensors="pt", padding=True).to(self.model.device)
outputs = self.model.generate(
**inputs,
temperature=self.generate_configs["temperature"],
max_new_tokens=self.generate_configs["max_new_tokens"],
top_p=self.generate_configs["top_p"],
top_k=self.generate_configs["top_k"],
repetition_penalty=self.generate_configs["repetition_penalty"],
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
print(outputs)
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.