sbintuitions/sarashina2.2-0.5b-instruct-v0.1

Model Summary

This repository provides Japanese language models trained by SB Intuitions.

Model Details

  • Model type: Autoregressive Language Model
  • Language(s): Japanese

Evaluation in Japanese and English Tasks

Model Elyza-tasks-100 Japanese MT Bench English MT Bench
Qwen/Qwen2.5-0.5B-instruct 1.53 2.95 4.98
sarashina2.2-0.5B-instruct-v0.1 2.38 4.55 5.09
Rakuten/RakutenAI-2.0-mini-instruct 2.41 4.49 5.13
SakanaAI/TinySwallow-1.5B-Instruct 2.81 5.24 6.31
Qwen/Qwen2.5-1.5B-instruct 2.28 4.06 6.99
llm-jp/llm-jp-3-1.8b-instruct3 2.53 4.62 4.83
sarashina2.2-1B-instruct-v0.1 2.88 5.09 6.46
google/gemma-2-2b-jpn-it 3.02 5.19 7.56
Qwen/Qwen2.5-3B-instruct 2.99 5.68 7.88
llm-jp/llm-jp-3-3.7b-instruct3 2.79 4.98 5.44
sarashina2.2-3B-instruct-v0.1 3.75 6.51 7.71

How to Use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, set_seed

# モデルのロード
model_name = "sbintuitions/sarashina2.2-0.5b-instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
set_seed(123)

# ユーザーの入力
user_input = [{"role": "user", "content": "こんにちは。あなたの名前を教えて"}]

# モデルによる応答生成
responses = chat_pipeline(
    user_input,
    max_length=50,
    do_sample=True,
    num_return_sequences=3,
)

# 応答を表示
for i, response in enumerate(responses, 1):
    print(f"Response {i}: {response['generated_text']}")

# Response 1: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}]
# Response 2: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'こんにちは!私の名前はSarashina2です。今日はどうしましたか?'}]
# Response 3: [{'role': 'user', 'content': 'こんにちは。あなたの名前を教えて'}, {'role': 'assistant', 'content': 'Sarashina2と言います。本日のご要件を教えて下さい。'}]

Limitations

This model has limited safety training. Therefore, it might generate some meaningless sequences, some inaccurate instances, or biased/objectionable outputs. Before using it, we would like developers to tune models based on human preferences and safety considerations.

License

MIT License

Downloads last month
1,415
Safetensors
Model size
793M params
Tensor type
BF16
·
Inference Providers NEW
Input a message to start chatting with sbintuitions/sarashina2.2-0.5b-instruct-v0.1.

Model tree for sbintuitions/sarashina2.2-0.5b-instruct-v0.1

Finetuned
(1)
this model
Quantizations
5 models

Collection including sbintuitions/sarashina2.2-0.5b-instruct-v0.1