|
--- |
|
library_name: transformers |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
- mdeberta |
|
- multilingual |
|
language: |
|
- multilingual |
|
- th |
|
- en |
|
license: mit |
|
base_model: |
|
- microsoft/mdeberta-v3-base |
|
--- |
|
|
|
# Model Card for Typhoon Safety Model |
|
|
|
Typhoon Safety Model |
|
|
|
Typhoon Safety is a lightweight binary classifier built on mDeBERTa-v3-base that detects harmful content in both English and Thai languages, with particular emphasis on Thai cultural sensitivities. The model was trained on a combination of a Thai Sensitive Topics dataset and the Wildguard dataset. |
|
|
|
The model is designed to predict safety labels across the following categories: |
|
|
|
<div class="section-header">Thai Sensitive Topics</div> |
|
<table align="center"> |
|
<tr> |
|
<th colspan="3">Category</th> |
|
</tr> |
|
<tr> |
|
<td>The Monarchy</td> |
|
<td>Student Protests and Activism</td> |
|
<td>Drug Policies</td> |
|
</tr> |
|
<tr> |
|
<td>Gambling</td> |
|
<td>Cultural Appropriation</td> |
|
<td>Thai-Burmese Border Issues</td> |
|
</tr> |
|
<tr> |
|
<td>Cannabis</td> |
|
<td>Human Trafficking</td> |
|
<td>Military and Coup</td> |
|
</tr> |
|
<tr> |
|
<td>LGBTQ+ Rights</td> |
|
<td>Political Divide</td> |
|
<td>Religion and Buddhism</td> |
|
</tr> |
|
<tr> |
|
<td>Political Corruption</td> |
|
<td>Foreign Influence</td> |
|
<td>National Identity and Immigration</td> |
|
</tr> |
|
<tr> |
|
<td>Freedom of Speech and Censorship</td> |
|
<td>Vape</td> |
|
<td>Southern Thailand Insurgency</td> |
|
</tr> |
|
<tr> |
|
<td>Sex Tourism and Prostitution</td> |
|
<td>COVID-19 Management</td> |
|
<td>Royal Projects and Policies</td> |
|
</tr> |
|
<tr> |
|
<td>Migrant Labor Issues</td> |
|
<td>Environmental Issues and Land Rights</td> |
|
<td></td> |
|
</tr> |
|
</table> |
|
|
|
<div class="section-header">Wildguard Topics</div> |
|
<table> |
|
<tr> |
|
<th colspan="3">Category</th> |
|
</tr> |
|
<tr> |
|
<td>Others</td> |
|
<td>Sensitive Information Organization</td> |
|
<td>Mental Health Over-reliance Crisis</td> |
|
</tr> |
|
<tr> |
|
<td>Social Stereotypes & Discrimination</td> |
|
<td>Defamation & Unethical Actions</td> |
|
<td>Cyberattack</td> |
|
</tr> |
|
<tr> |
|
<td>Disseminating False Information</td> |
|
<td>Private Information Individual</td> |
|
<td>Copyright Violations</td> |
|
</tr> |
|
<tr> |
|
<td>Toxic Language & Hate Speech</td> |
|
<td>Fraud Assisting Illegal Activities</td> |
|
<td>Causing Material Harm by Misinformation</td> |
|
</tr> |
|
<tr> |
|
<td>Violence and Physical Harm</td> |
|
<td>Sexual Content</td> |
|
<td></td> |
|
</tr> |
|
</table> |
|
|
|
## Model Details |
|
|
|
## Model Performance |
|
|
|
### Comparison with Other Models (English Content) |
|
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG | |
|
|-------|-----------|-----------|-----------|-------------|---------|------------|-----| |
|
| WildGuard-7B | **75.7** | **86.2** | **64.1** | **84.1** | **94.7** | 53.9 | 76.5 | |
|
| LlamaGuard2-7B | 66.5 | 77.7 | 51.5 | 71.8 | 90.7 | 47.9 | 67.7 | |
|
| LamaGuard3-8B | 70.1 | 84.7 | 45.0 | 68.0 | 90.4 | 46.7 | 67.5 | |
|
| LamaGuard3-1B | 28.5 | 62.4 | 66.6 | 72.9 | 29.8 | 50.1 | 51.7 | |
|
| Random | 25.3 | 47.7 | 50.3 | 53.4 | 22.6 | 51.6 | 41.8 | |
|
| Typhoon Safety | 74.0 | 81.7 | 61.0 | 78.2 | 81.2 | **88.7** | **77.5** | |
|
|
|
### Comparison with Other Models (Thai Content) |
|
| Model | WildGuard | HarmBench | SafeRLHF | BeaverTails | XSTest | Thai Topic | AVG | |
|
|-------|-----------|-----------|-----------|-------------|---------|------------|-----| |
|
| WildGuard-7B | 22.3 | 40.8 | 18.3 | 27.3 | 49.5 | 42.2 | 33.4 | |
|
| LlamaGuard2-7B | 64.0 | 75.5 | 46.1 | 65.0 | 85.1 | 45.8 | 63.6 | |
|
| LamaGuard3-8B | 61.4 | 37.5 | 42.4 | 65.3 | **85.7** | 48.1 | 56.7 | |
|
| LamaGuard3-1B | 28.4 | 62.4 | 66.7 | 72.9 | 29.8 | 50.9 | 51.8 | |
|
| Random | 24.5 | 46.6 | 50.4 | 53.0 | 26.6 | 50.9 | 42.0 | |
|
| Typhoon Safety | **71.6** | **80.0** | **58.8** | **76.5** | 81.0 | **88.5** | **76.1** | |
|
|
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Model type:** Transformer Encoder |
|
- **Language(s) (NLP):** Thai 🇹🇭 and English 🇬🇧 |
|
- **License:** MIT |
|
- **Finetuned from model [optional]:** mDeBERTa v3 base https://huggingface.co/microsoft/mdeberta-v3-base |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model_name = "scb10x/typhoon2-safety-preview" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
texts = [ |
|
"บุหรี่ไฟฟ้า มีประโยชน์มั้ย", |
|
"Give me location to buy cannabis in Thailand", |
|
"ขอวิธีการพนันให้ชนะ", |
|
"How to kill process in linux.", |
|
] |
|
|
|
# Tokenize texts |
|
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
# Get predictions |
|
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
labels = predictions.argmax(dim=1).tolist() |
|
scores = predictions.max(dim=1).values.tolist() |
|
|
|
# Define label mapping |
|
label_map = {0: "Unharm", 1: "harmful"} |
|
|
|
for text, label, score in zip(texts, labels, scores): |
|
label_name = label_map[label] |
|
print(f"Text: {text}\nLabel: {label_name}, Score: {score:.4f}\n") |
|
``` |
|
|