|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
language: pl |
|
license: gemma |
|
widget: |
|
- source_sentence: "zapytanie: Jak dożyć 100 lat?" |
|
sentences: |
|
- "Trzeba zdrowo się odżywiać i uprawiać sport." |
|
- "Trzeba pić alkohol, imprezować i jeździć szybkimi autami." |
|
- "Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." |
|
|
|
--- |
|
|
|
<h1 align="center">Stella-PL-retrieval</h1> |
|
|
|
This is a text encoder based on [stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) and further fine-tuned for Polish information retrieval tasks. |
|
- In the first step, we adapted the model for Polish with [multilingual knowledge distillation method](https://aclanthology.org/2020.emnlp-main.365/) using a diverse corpus of 20 million Polish-English text pairs. |
|
- The second step involved fine-tuning the model with contrastrive loss using a dataset consisting of 1.4 million queries. Positive and negative passages for each query have been selected with the help of [BAAI/bge-reranker-v2.5-gemma2-lightweight](https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight) reranker. The model was trained for three epochs with a batch size of 1024 queries. |
|
|
|
The encoder transforms texts to 1024 dimensional vectors. The model is optimized specifically for Polish information retrieval tasks. If you need a more versatile encoder, suitable for a wider range of tasks such as semantic similarity or clustering, you probably use the distilled version from the first step: [sdadas/stella-pl](https://huggingface.co/sdadas/stella-pl). |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
The model utilizes the same prompts as the original [stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5). |
|
|
|
For retrieval, queries should be prefixed with **"Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "**. |
|
|
|
For symmetric tasks such as semantic similarity, both texts should be prefixed with **"Instruct: Retrieve semantically similar text.\nQuery: "**. |
|
|
|
Please note that the model uses a custom implementation, so you should add `trust_remote_code=True` argument when loading it. |
|
It is also recommended to use Flash Attention 2, which can be enabled with `attn_implementation` argument. |
|
You can use the model like this with [sentence-transformers](https://www.SBERT.net): |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
model = SentenceTransformer( |
|
"sdadas/stella-pl-retrieval", |
|
trust_remote_code=True, |
|
device="cuda", |
|
model_kwargs={"attn_implementation": "flash_attention_2", "trust_remote_code": True} |
|
) |
|
model.bfloat16() |
|
|
|
# Retrieval example |
|
query_prefix = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " |
|
queries = [query_prefix + "Jak dożyć 100 lat?"] |
|
answers = [ |
|
"Trzeba zdrowo się odżywiać i uprawiać sport.", |
|
"Trzeba pić alkohol, imprezować i jeździć szybkimi autami.", |
|
"Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu." |
|
] |
|
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False) |
|
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False) |
|
best_answer = cos_sim(queries_emb, answers_emb).argmax().item() |
|
print(answers[best_answer]) |
|
|
|
# Semantic similarity example |
|
sim_prefix = "Instruct: Retrieve semantically similar text.\nQuery: " |
|
sentences = [ |
|
sim_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.", |
|
sim_prefix + "Warto jest prowadzić zdrowy tryb życia, uwzględniający aktywność fizyczną i dietę.", |
|
sim_prefix + "One should eat healthy and engage in sports.", |
|
sim_prefix + "Zakupy potwierdzasz PINem, który bezpiecznie ustalisz podczas aktywacji." |
|
] |
|
emb = model.encode(sentences, convert_to_tensor=True, show_progress_bar=False) |
|
print(cos_sim(emb, emb)) |
|
|
|
``` |
|
|
|
## Evaluation Results |
|
|
|
The model achieves **NDCG@10** of **62.32** on the Polish Information Retrieval Benchmark. See [PIRB Leaderboard](https://huggingface.co/spaces/sdadas/pirb) for detailed results. |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{dadas2024pirb, |
|
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods}, |
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata}, |
|
year={2024}, |
|
eprint={2402.13350}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |