File size: 1,869 Bytes
863cbe2 0c5818e 863cbe2 0c5818e 9190b79 0c5818e 9190b79 284a82f 9190b79 284a82f 9190b79 284a82f 9190b79 284a82f 863cbe2 0c5818e 284a82f 0c5818e 9190b79 284a82f 9190b79 284a82f 0c5818e 52614c6 0c5818e 284a82f 0c5818e 284a82f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language: es
license: gpl-3.0
tags:
- spacy
- token-classification
widget:
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago."
- text: "El proyecto lo financia el Ministerio de Industria y Competitividad."
model-index:
- name: es_spacy_ner_cds
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9648998822
- name: NER Recall
type: recall
value: 0.9603751465
- name: NER F Score
type: f_score
value: 0.9626321974
---
# Introduction
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
| Feature | Description |
| --- | --- |
| **Name** | `es_spacy_ner_cds` |
| **Version** | `0.0.1a` |
| **spaCy** | `>=3.4.3,<3.5.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
### Label Scheme
<details>
<summary>View label scheme (4 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
## Usage
You can use this model with the spaCy *pipeline* for NER.
```python
import spacy
from spacy.pipeline import merge_entities
nlp = spacy.load("es_spacy_ner_cds")
nlp.add_pipe('sentencizer')
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. El proyecto lo financia el Ministerio de Industria y Competitividad."
ner_pipe = nlp(example)
print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
print(token.text, token.ent_type_)
```
## Dataset
ToDo
### Accuracy
| Type | Score |
| --- | --- |
| `ENTS_F` | 96.26 |
| `ENTS_P` | 96.49 |
| `ENTS_R` | 96.04 |
| `TOK2VEC_LOSS` | 62780.17 |
| `NER_LOSS` | 34006.41 |
|