My Toxicity Debiaser Pipeline
This custom pipeline debiases toxic text using a toxicity classifier and GPT-2.
Usage
To use this pipeline, you first need to download the required models and tokenizers, and then import the MyToxicityDebiaserPipeline
class:
from transformers import AutoTokenizer, AutoModelForSequenceClassification, GPT2LMHeadModel, GPT2Tokenizer
from my_toxicity_debiaser import MyToxicityDebiaserPipeline
toxicity_model_name = "shainaraza/toxity_classify_debiaser"
gpt_model_name = "gpt2"
toxicity_tokenizer = AutoTokenizer.from_pretrained(toxicity_model_name)
toxicity_model = AutoModelForSequenceClassification.from_pretrained(toxicity_model_name)
gpt_tokenizer = GPT2Tokenizer.from_pretrained(gpt_model_name)
gpt_model = GPT2LMHeadModel.from_pretrained(gpt_model_name)
pipeline = MyToxicityDebiaserPipeline(
model=toxicity_model,
tokenizer=toxicity_tokenizer,
gpt_model=gpt_model,
gpt_tokenizer=gpt_tokenizer,
)
text = "Your example text here"
result = pipeline(text)
print(result)