|
# My Toxicity Debiaser Pipeline |
|
|
|
This custom pipeline debiases toxic text using a toxicity classifier and GPT-2. |
|
|
|
## Usage |
|
|
|
To use this pipeline, you first need to download the required models and tokenizers, and then import the `MyToxicityDebiaserPipeline` class: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, GPT2LMHeadModel, GPT2Tokenizer |
|
from my_toxicity_debiaser import MyToxicityDebiaserPipeline |
|
|
|
toxicity_model_name = "shainaraza/toxity_classify_debiaser" |
|
gpt_model_name = "gpt2" |
|
|
|
toxicity_tokenizer = AutoTokenizer.from_pretrained(toxicity_model_name) |
|
toxicity_model = AutoModelForSequenceClassification.from_pretrained(toxicity_model_name) |
|
|
|
gpt_tokenizer = GPT2Tokenizer.from_pretrained(gpt_model_name) |
|
gpt_model = GPT2LMHeadModel.from_pretrained(gpt_model_name) |
|
|
|
pipeline = MyToxicityDebiaserPipeline( |
|
model=toxicity_model, |
|
tokenizer=toxicity_tokenizer, |
|
gpt_model=gpt_model, |
|
gpt_tokenizer=gpt_tokenizer, |
|
) |
|
|
|
text = "Your example text here" |
|
result = pipeline(text) |
|
print(result) |
|
|