whisper-small-uz-v1 / README.md
shivkumarganesh's picture
update model card README.md
ea1937f
metadata
language:
  - uz
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Uzbek
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 uz
          type: mozilla-foundation/common_voice_11_0
          config: uz
          split: test
          args: uz
        metrics:
          - name: Wer
            type: wer
            value: 25.785707218942715

Whisper Small Uzbek

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 uz dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4357
  • Wer: 25.7857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3621 1.03 1000 0.4819 32.3209
0.2378 2.07 2000 0.4413 29.0077
0.2342 4.01 3000 0.4224 27.3939
0.1286 5.04 4000 0.4357 25.7857
0.1192 6.08 5000 0.4727 27.2752
0.0147 8.02 6000 0.5230 26.7267
0.0425 9.05 7000 0.5336 26.3628
0.0059 10.08 8000 0.5658 26.8476

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2