metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
- trl
- orpo
- alignment-handbook
- generated_from_trainer
datasets:
- silviasapora/low_quality_dpo7k
model-index:
- name: gemma-7b-orpo-low-quality
results: []
gemma-7b-orpo-low-quality
This model is a fine-tuned version of google/gemma-7b on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set:
- Loss: 1.5517
- Rewards/chosen: -0.0554
- Rewards/rejected: -0.0646
- Rewards/accuracies: 0.5612
- Rewards/margins: 0.0092
- Logps/rejected: -1.2920
- Logps/chosen: -1.1085
- Logits/rejected: 268.0282
- Logits/chosen: 297.1682
- Nll Loss: 1.4855
- Log Odds Ratio: -0.6970
- Log Odds Chosen: 0.2856
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.436 | 0.9955 | 167 | 1.4679 | -0.0508 | -0.0571 | 0.5468 | 0.0063 | -1.1420 | -1.0158 | 288.9292 | 318.3812 | 1.4121 | -0.6895 | 0.1983 |
1.1098 | 1.9970 | 335 | 1.4451 | -0.0518 | -0.0579 | 0.5468 | 0.0061 | -1.1581 | -1.0353 | 286.4312 | 315.0296 | 1.3839 | -0.7228 | 0.2105 |
0.5921 | 2.9866 | 501 | 1.5517 | -0.0554 | -0.0646 | 0.5612 | 0.0092 | -1.2920 | -1.1085 | 268.0282 | 297.1682 | 1.4855 | -0.6970 | 0.2856 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1