from transformers import AutoTokenizer, TextGenerationPipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig import logging

logging.basicConfig( format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S" )

pretrained_model_dir = "Qwen/Qwen1.5-7B-Chat" quantized_model_dir = "/gptq_model-4bit-128g"

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True) examples = [ tokenizer( "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm." ) ]

quantize_config = BaseQuantizeConfig( bits=4, # quantize model to 4-bit group_size=128, # it is recommended to set the value to 128 desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad )

load un-quantized model, by default, the model will always be loaded into CPU memory

model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)

quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"

model.quantize(examples)

save quantized model

model.save_quantized(quantized_model_dir)

save quantized model using safetensors

model.save_quantized(quantized_model_dir, use_safetensors=True)

push quantized model to Hugging Face Hub.

to use use_auth_token=True, Login first via huggingface-cli login.

or pass explcit token with: use_auth_token="hf_xxxxxxx"

(uncomment the following three lines to enable this feature)

repo_id = f"YourUserName/{quantized_model_dir}"

commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"

model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)

alternatively you can save and push at the same time

(uncomment the following three lines to enable this feature)

repo_id = f"YourUserName/{quantized_model_dir}"

commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"

model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)

load quantized model to the first GPU

model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")

download quantized model from Hugging Face Hub and load to the first GPU

model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)

inference with model.generate

print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))

or you can also use pipeline

pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer) print(pipeline("auto-gptq is")[0]["generated_text"])

Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.