模型介绍

在ChatGLM3-6B模型上使用QLoRA在HasturOfficial/adgen数据集上进行广告生成微调

数据集介绍

HasturOfficial/adgen是广告生成数据集

微调相关设置

  • 微调使用一张4090显卡
  • 使用nf4量化数据类型加载模型,开启双量化配置,以bf16混合精度训练
  • per_device_train_batch_size = 8
  • gradient_accumulation_steps = 4
  • learning_rate = 1e-3
  • warmup_ratio=0.1
  • lr_scheduler_type="linear"
  • lora_rank = 4
  • lora_alpha = 32
  • lora_dropout = 0.05

使用方法

from transformers import AutoTokenizer, AutoModel

model_name_or_path = "snowfly/glm3-QLoRA-adgen"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(pretrained_model_name_or_path=model_name_or_path, trust_remote_code=True, device='cuda')
model = model.eval()
input_text = '类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领'
response, history = model.chat(tokenizer=tokenizer, query=input_text, history=[])
print(response)
Downloads last month
16
Safetensors
Model size
6.24B params
Tensor type
FP16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train snowfly/glm3-QLoRA-adgen