sohamtiwari3120's picture
update model card README.md
467a5d0
|
raw
history blame
3.68 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - generator
model-index:
  - name: deberta-v3-base-finetuned-ner
    results: []

deberta-v3-base-finetuned-ner

This model is a fine-tuned version of microsoft/deberta-v3-base on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9895
  • Overall Precision: 0.5201
  • Overall Recall: 0.3319
  • Overall F1: 0.4052
  • Overall Accuracy: 0.9326
  • Datasetname F1: 0.4952
  • Hyperparametername F1: 0.48
  • Hyperparametervalue F1: 0.5
  • Methodname F1: 0.3933
  • Metricname F1: 0.2488
  • Metricvalue F1: 0.2456
  • Taskname F1: 0.6393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Datasetname F1 Hyperparametername F1 Hyperparametervalue F1 Methodname F1 Metricname F1 Metricvalue F1 Taskname F1
No log 1.0 141 1.2556 0.2784 0.1520 0.1967 0.9212 0.0 0.3478 0.2581 0.3750 0.0 0.0 0.0556
No log 2.0 282 0.8945 0.3020 0.5096 0.3793 0.9088 0.5 0.1538 0.2778 0.3540 0.4566 0.0896 0.3756
No log 3.0 423 1.0233 0.3702 0.4518 0.4069 0.9268 0.4211 0.2647 0.3333 0.3529 0.4658 0.1613 0.5270
0.6352 4.0 564 1.1734 0.4316 0.4390 0.4352 0.9310 0.4854 0.3462 0.3415 0.4352 0.4269 0.2295 0.5827
0.6352 5.0 705 1.3147 0.4840 0.4540 0.4685 0.9390 0.5143 0.5 0.625 0.5739 0.3495 0.2333 0.5865
0.6352 6.0 846 2.1441 0.5618 0.3405 0.4240 0.9373 0.5185 0.5581 0.6061 0.4898 0.2365 0.1071 0.6126
0.6352 7.0 987 1.9895 0.5201 0.3319 0.4052 0.9326 0.4952 0.48 0.5 0.3933 0.2488 0.2456 0.6393

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1