|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: deberta-v3-base-finetuned-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-finetuned-ner |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9895 |
|
- Overall Precision: 0.5201 |
|
- Overall Recall: 0.3319 |
|
- Overall F1: 0.4052 |
|
- Overall Accuracy: 0.9326 |
|
- Datasetname F1: 0.4952 |
|
- Hyperparametername F1: 0.48 |
|
- Hyperparametervalue F1: 0.5 |
|
- Methodname F1: 0.3933 |
|
- Metricname F1: 0.2488 |
|
- Metricvalue F1: 0.2456 |
|
- Taskname F1: 0.6393 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Datasetname F1 | Hyperparametername F1 | Hyperparametervalue F1 | Methodname F1 | Metricname F1 | Metricvalue F1 | Taskname F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:---------------------:|:----------------------:|:-------------:|:-------------:|:--------------:|:-----------:| |
|
| No log | 1.0 | 141 | 1.2556 | 0.2784 | 0.1520 | 0.1967 | 0.9212 | 0.0 | 0.3478 | 0.2581 | 0.3750 | 0.0 | 0.0 | 0.0556 | |
|
| No log | 2.0 | 282 | 0.8945 | 0.3020 | 0.5096 | 0.3793 | 0.9088 | 0.5 | 0.1538 | 0.2778 | 0.3540 | 0.4566 | 0.0896 | 0.3756 | |
|
| No log | 3.0 | 423 | 1.0233 | 0.3702 | 0.4518 | 0.4069 | 0.9268 | 0.4211 | 0.2647 | 0.3333 | 0.3529 | 0.4658 | 0.1613 | 0.5270 | |
|
| 0.6352 | 4.0 | 564 | 1.1734 | 0.4316 | 0.4390 | 0.4352 | 0.9310 | 0.4854 | 0.3462 | 0.3415 | 0.4352 | 0.4269 | 0.2295 | 0.5827 | |
|
| 0.6352 | 5.0 | 705 | 1.3147 | 0.4840 | 0.4540 | 0.4685 | 0.9390 | 0.5143 | 0.5 | 0.625 | 0.5739 | 0.3495 | 0.2333 | 0.5865 | |
|
| 0.6352 | 6.0 | 846 | 2.1441 | 0.5618 | 0.3405 | 0.4240 | 0.9373 | 0.5185 | 0.5581 | 0.6061 | 0.4898 | 0.2365 | 0.1071 | 0.6126 | |
|
| 0.6352 | 7.0 | 987 | 1.9895 | 0.5201 | 0.3319 | 0.4052 | 0.9326 | 0.4952 | 0.48 | 0.5 | 0.3933 | 0.2488 | 0.2456 | 0.6393 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|