sometimesanotion
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -19,7 +19,8 @@ language:
|
|
19 |
|
20 |
Lamarck-14B version 0.3 is strongly based on [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) as a diffuse influence for prose and reasoning. Arcee's pioneering use of distillation and innovative merge techniques create a diverse knowledge pool for its models.
|
21 |
|
22 |
-
###
|
|
|
23 |
- Two model_stocks used to begin specialized branches for reasoning and prose quality.
|
24 |
- For refinement on Virtuoso as a base model, DELLA and SLERP include the model_stocks while re-emphasizing selected ancestors.
|
25 |
- For integration, a SLERP merge of Virtuoso with the converged branches.
|
@@ -36,3 +37,157 @@ Lamarck-14B version 0.3 is strongly based on [arcee-ai/Virtuoso-Small](https://h
|
|
36 |
- **[CultriX/Qwen2.5-14B-Wernicke](http://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)** - A top performer for Arc and GPQA, Wernicke is re-emphasized in small but highly-ranked portions of the model.
|
37 |
|
38 |
![graph.png](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3-experimental/resolve/main/graph.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
Lamarck-14B version 0.3 is strongly based on [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) as a diffuse influence for prose and reasoning. Arcee's pioneering use of distillation and innovative merge techniques create a diverse knowledge pool for its models.
|
21 |
|
22 |
+
### Overview:
|
23 |
+
|
24 |
- Two model_stocks used to begin specialized branches for reasoning and prose quality.
|
25 |
- For refinement on Virtuoso as a base model, DELLA and SLERP include the model_stocks while re-emphasizing selected ancestors.
|
26 |
- For integration, a SLERP merge of Virtuoso with the converged branches.
|
|
|
37 |
- **[CultriX/Qwen2.5-14B-Wernicke](http://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)** - A top performer for Arc and GPQA, Wernicke is re-emphasized in small but highly-ranked portions of the model.
|
38 |
|
39 |
![graph.png](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3-experimental/resolve/main/graph.png)
|
40 |
+
|
41 |
+
### Merge Strategy:
|
42 |
+
|
43 |
+
```yaml
|
44 |
+
name: lamarck-14b-reason-della # This contributes the knowledge and reasoning pool, later to be merged
|
45 |
+
merge_method: della # with the dominant instruction-following model
|
46 |
+
base_model: arcee-ai/Virtuoso-Small
|
47 |
+
tokenizer_source: arcee-ai/Virtuoso-Small
|
48 |
+
parameters:
|
49 |
+
int8_mask: false
|
50 |
+
normalize: true
|
51 |
+
rescale: false
|
52 |
+
density: 0.30
|
53 |
+
weight: 0.50
|
54 |
+
epsilon: 0.08
|
55 |
+
lambda: 1.00
|
56 |
+
models:
|
57 |
+
- model: CultriX/SeQwence-14B-EvolMerge
|
58 |
+
parameters:
|
59 |
+
density: 0.70
|
60 |
+
weight: 0.90
|
61 |
+
- model: sometimesanotion/lamarck-14b-reason-model_stock
|
62 |
+
parameters:
|
63 |
+
density: 0.90
|
64 |
+
weight: 0.60
|
65 |
+
- model: CultriX/Qwen2.5-14B-Wernicke
|
66 |
+
parameters:
|
67 |
+
density: 0.20
|
68 |
+
weight: 0.30
|
69 |
+
dtype: bfloat16
|
70 |
+
out_dtype: bfloat16
|
71 |
+
---
|
72 |
+
name: lamarck-14b-prose-della # This contributes the prose, later to be merged
|
73 |
+
merge_method: della # with the dominant instruction-following model
|
74 |
+
base_model: arcee-ai/Virtuoso-Small
|
75 |
+
tokenizer_source: arcee-ai/Virtuoso-Small
|
76 |
+
parameters:
|
77 |
+
int8_mask: false
|
78 |
+
normalize: true
|
79 |
+
rescale: false
|
80 |
+
density: 0.30
|
81 |
+
weight: 0.50
|
82 |
+
epsilon: 0.08
|
83 |
+
lambda: 0.95
|
84 |
+
models:
|
85 |
+
- model: sthenno-com/miscii-14b-1028
|
86 |
+
parameters:
|
87 |
+
density: 0.40
|
88 |
+
weight: 0.90
|
89 |
+
- model: sometimesanotion/lamarck-14b-prose-model_stock
|
90 |
+
parameters:
|
91 |
+
density: 0.60
|
92 |
+
weight: 0.70
|
93 |
+
- model: underwoods/medius-erebus-magnum-14b
|
94 |
+
dtype: bfloat16
|
95 |
+
out_dtype: bfloat16
|
96 |
+
---
|
97 |
+
name: lamarck-14b-converge-della # This is the strongest control point to quickly
|
98 |
+
merge_method: della # re-balance reasoning vs. prose
|
99 |
+
base_model: arcee-ai/Virtuoso-Small
|
100 |
+
tokenizer_source: arcee-ai/Virtuoso-Small
|
101 |
+
parameters:
|
102 |
+
int8_mask: false
|
103 |
+
normalize: true
|
104 |
+
rescale: false
|
105 |
+
density: 0.30
|
106 |
+
weight: 0.50
|
107 |
+
epsilon: 0.08
|
108 |
+
lambda: 1.00
|
109 |
+
models:
|
110 |
+
- model: sometimesanotion/lamarck-14b-reason-della
|
111 |
+
parameters:
|
112 |
+
density: 0.80
|
113 |
+
weight: 1.00
|
114 |
+
- model: arcee-ai/Virtuoso-Small
|
115 |
+
parameters:
|
116 |
+
density: 0.40
|
117 |
+
weight: 0.50
|
118 |
+
- model: sometimesanotion/lamarck-14b-prose-della
|
119 |
+
parameters:
|
120 |
+
density: 0.10
|
121 |
+
weight: 0.40
|
122 |
+
dtype: bfloat16
|
123 |
+
out_dtype: bfloat16
|
124 |
+
---
|
125 |
+
name: lamarck-14b-converge # Virtuoso has good capabilities all-around; it is 100% of the first
|
126 |
+
merge_method: slerp # two layers, and blends into the reasoning+prose convergance
|
127 |
+
base_model: arcee-ai/Virtuoso-Small # for some interesting boosts
|
128 |
+
tokenizer_source: base
|
129 |
+
parameters:
|
130 |
+
t: [ 0.00, 0.60, 0.80, 0.80, 0.80, 0.70, 0.40 ]
|
131 |
+
slices:
|
132 |
+
- sources:
|
133 |
+
- layer_range: [ 0, 2 ]
|
134 |
+
model: arcee-ai/Virtuoso-Small
|
135 |
+
- layer_range: [ 0, 2 ]
|
136 |
+
model: merges/lamarck-14b-converge-della
|
137 |
+
t: [ 0.00, 0.00 ]
|
138 |
+
- sources:
|
139 |
+
- layer_range: [ 2, 8 ]
|
140 |
+
model: arcee-ai/Virtuoso-Small
|
141 |
+
- layer_range: [ 2, 8 ]
|
142 |
+
model: merges/lamarck-14b-converge-della
|
143 |
+
t: [ 0.00, 0.60 ]
|
144 |
+
- sources:
|
145 |
+
- layer_range: [ 8, 16 ]
|
146 |
+
model: arcee-ai/Virtuoso-Small
|
147 |
+
- layer_range: [ 8, 16 ]
|
148 |
+
model: merges/lamarck-14b-converge-della
|
149 |
+
t: [ 0.60, 0.70 ]
|
150 |
+
- sources:
|
151 |
+
- layer_range: [ 16, 24 ]
|
152 |
+
model: arcee-ai/Virtuoso-Small
|
153 |
+
- layer_range: [ 16, 24 ]
|
154 |
+
model: merges/lamarck-14b-converge-della
|
155 |
+
t: [ 0.70, 0.70 ]
|
156 |
+
- sources:
|
157 |
+
- layer_range: [ 24, 32 ]
|
158 |
+
model: arcee-ai/Virtuoso-Small
|
159 |
+
- layer_range: [ 24, 32 ]
|
160 |
+
model: merges/lamarck-14b-converge-della
|
161 |
+
t: [ 0.70, 0.70 ]
|
162 |
+
- sources:
|
163 |
+
- layer_range: [ 32, 40 ]
|
164 |
+
model: arcee-ai/Virtuoso-Small
|
165 |
+
- layer_range: [ 32, 40 ]
|
166 |
+
model: merges/lamarck-14b-converge-della
|
167 |
+
t: [ 0.70, 0.60 ]
|
168 |
+
- sources:
|
169 |
+
- layer_range: [ 40, 48 ]
|
170 |
+
model: arcee-ai/Virtuoso-Small
|
171 |
+
- layer_range: [ 40, 48 ]
|
172 |
+
model: merges/lamarck-14b-converge-della
|
173 |
+
t: [ 0.60, 0.40 ]
|
174 |
+
dtype: bfloat16
|
175 |
+
out_dtype: bfloat16
|
176 |
+
---
|
177 |
+
name: lamarck-14b-finalize
|
178 |
+
merge_method: ties
|
179 |
+
base_model: Qwen/Qwen2.5-14B
|
180 |
+
tokenizer_source: Qwen/Qwen2.5-14B-Instruct
|
181 |
+
parameters:
|
182 |
+
int8_mask: false
|
183 |
+
normalize: true
|
184 |
+
rescale: false
|
185 |
+
density: 1.00
|
186 |
+
weight: 1.00
|
187 |
+
models:
|
188 |
+
- model: merges/lamarck-14b-converge
|
189 |
+
dtype: bfloat16
|
190 |
+
out_dtype: bfloat16
|
191 |
+
---
|
192 |
+
|
193 |
+
```
|