Oolel: A High-Performing Open LLM for Wolof
Despite numerous open-source innovations in large language models, African languages have remained underrepresented.
Soynade Research is transforming this landscape with Oolel, the first open-source language model for Wolof.
Built on the Qwen 2.5 architecture, Oolel combines state-of-the-art AI technology with deep Wolof linguistic expertise. With careful high-quality curated data, we trained and optimized Oolel for the following tasks:
- RAG supporting Wolof queries with English, French, or Wolof context.
- Bidirectional translation between English and Wolof
- Natural text generation in Wolof
- Math in Wolof
- And many other standard NLP tasks:
- Summarization
- Text edition
- etc
3. Usage
!!! It's important to add your system prompt !!!
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
"soynade-research/Oolel-v0.1",
torch_dtype = torch.bfloat16,
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("soynade-research/Oolel-v0.1")
def generate_response(messages, max_new_tokens=1024, temperature=0.1):
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
Some tasks examples:
- Translation Tasks
system_prompt = "You're a Wolof AI assistant. Please always provide detailed and useful answers to the user queries."
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Translate to Wolof: Bassirou Diomaye Faye is the new Senegalese president. He is 44 years old"}
]
print(generate_response(messages))
- Code generation
system_prompt = "You're a Wolof AI assistant. Please always provide detailed and useful answers to the user queries"
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Bindal ab klaas Python buy wone ni ñuy jëfandikoo dataframe yi ci Pandas"}
]
print(generate_response(messages))
- Problem Solving
system_prompt = "You're a Wolof AI assistant. Please always provide detailed and useful answers to the user queries."
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Ndax nga mën ma won ni ñuy resolver problème bii: Fatou dafa jënd 3 kilo ceeb, 2 kilo diw ak 5 kilo sukër. Ceeb gi wenn kilo 500 CFA la, diw gi 1200 CFA kilo bi, sukër gi 750 CFA kilo bi. Ñaata la wara fay?"}
]
from pprint import pprint
pprint(generate_response(messages))
- Text Generation (e.g. story generation)
system_prompt = "You are a skilled Wolof storyteller (Gewël) with deep knowledge of African folktales and traditions. Write engaging stories in Wolof that reflect African cultural values and wisdom."
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Bindal ab léeb ci gaynde gi lekk muus mi"}
]
print(generate_response(messages, temperature=0.9))
- Multi-turn conversations Oolel is not optimized for multi-turn conversations, but you can try it!
messages = [
{"role": "user", "content": "Wax ma clan mooy CEDEAO ? Ci lan la liggeey?"},
{"role": "assistant", "content": "CEDEAO mooy 'organisation' gu boole reew yi nekk ci pennc Afrika bi. Mu ngi sukkandiku ci wàll économie, politig, ak déggoo diggante reew yi"},
{"role": "user", "content": "ñaata reew ñoo ci bokk?"}
]
print(generate_response(messages))
Authors
- Yaya SY: NLP Researcher (Efficient Continued Pretraining)
- Dioula DOUCOURE: Data & NLP Engineer
- Downloads last month
- 434
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.