Spaces:
Runtime error
Runtime error
File size: 12,743 Bytes
2c2ec39 58d8c29 09bfa0e 3111eb6 09bfa0e 3111eb6 09bfa0e 3111eb6 09bfa0e 3111eb6 09bfa0e 58d8c29 18801fb 2bb119f 18801fb 2bb119f 58d8c29 18801fb bcdfbc2 18801fb bead680 18801fb 1a9d613 f45ec7c bead680 18801fb 09bfa0e 18801fb 2d89a48 58d8c29 c9fdcf2 09bfa0e 58d8c29 c9fdcf2 2d89a48 e563844 58d8c29 c9fdcf2 58d8c29 aa75803 58d8c29 18801fb bcdfbc2 9a94aea bcdfbc2 9a94aea bcdfbc2 09bfa0e bcdfbc2 c9f7b16 bcdfbc2 ed6456c bcdfbc2 ed6456c 18801fb ed6456c 09bfa0e ed6456c a2dd461 ed6456c 09bfa0e ed6456c 58d8c29 18801fb 393821f bcdfbc2 393821f 09bfa0e 393821f a2dd461 393821f 09bfa0e 393821f 2d89a48 bead680 58d8c29 18801fb 09bfa0e 18801fb 58d8c29 09bfa0e 58d8c29 2c2ec39 2446c8a 58d8c29 f3379af 58d8c29 f3379af 58d8c29 f3379af 58d8c29 09bfa0e 58d8c29 09bfa0e f3379af 58d8c29 2c2ec39 f3379af 2c2ec39 f3379af 2c2ec39 58d8c29 2c2ec39 58d8c29 2c2ec39 58d8c29 2c2ec39 18801fb 2c2ec39 3d2851f 2c2ec39 58d8c29 9e2634b 58d8c29 31deabc 2e8bf47 9e2634b 31deabc 9e2634b 31deabc 9e2634b 2e8bf47 9e2634b 31deabc 9e2634b 58d8c29 bcdfbc2 58d8c29 3d2851f 9e2634b 58d8c29 393821f 2c2ec39 393821f 2c2ec39 393821f 2c2ec39 ed6456c 2c2ec39 ed6456c 2c2ec39 393821f bcdfbc2 393821f 2c2ec39 393821f 58d8c29 9e2634b 58d8c29 2c2ec39 58d8c29 2c2ec39 58d8c29 f3379af 09bfa0e 58d8c29 2446c8a 58d8c29 b43278c 58d8c29 2c2ec39 f3379af 58d8c29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
from apscheduler.schedulers.background import BackgroundScheduler
import datetime
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
# Translation of legends and titels
ANNOTATED = 'Đã dịch'
NUMBER_ANNOTATED = 'Tổng số mẫu đã dịch'
PENDING = 'Số mẫu còn lại'
NUMBER_ANNOTATORS = "Số thành viên tham gia"
NAME = 'Username'
NUMBER_ANNOTATIONS = 'Tỗng số mẫu'
CATEGORY = 'Danh mục'
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
# target_dataset = rg.FeedbackDataset.from_argilla(
# os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
# )
target_dataset = source_dataset.filter_by(response_status=["submitted"])
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def donut_chart_total() -> alt.Chart:
"""
This function returns a donut chart with the progress of the total annotations.
Counts each record that has been annotated at least once.
Returns:
An altair chart with the donut chart.
"""
# Load your data
annotated_records = len(target_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
# Prepare data for the donut chart
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": [ANNOTATED, PENDING],
"colors": ["#4CAF50", "#757575"], # Green for Completed, Grey for Remaining
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title=CATEGORY)),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
chart = c1 + c2
return chart
def donut_chart_target() -> alt.Chart:
"""
This function returns a donut chart with the progress of the total annotations, in terms of the v1 objective.
Counts each record that has been annotated at least once.
Returns:
An altair chart with the donut chart.
"""
# Load your data
annotated_records = len(target_dataset)
pending_records = int(os.getenv("TARGET_ANNOTATIONS_V1")) - annotated_records
# Prepare data for the donut chart
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": [ANNOTATED, PENDING],
"colors": ["#4CAF50", "#757575"], # Green for Completed, Grey for Remaining
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart_remaining() -> alt.Chart:
"""
This function returns a KPI chart with the remaining amount of records to be annotated.
Returns:
An altair chart with the KPI chart.
"""
pending_records = int(os.getenv("TARGET_RECORDS")) - len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [PENDING], "Value": [pending_records]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=PENDING, width=250, height=200)
)
return chart
def kpi_chart_submitted() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of records that have been annotated.
Returns:
An altair chart with the KPI chart.
"""
total = len(target_dataset)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATED, width=250, height=200)
)
return chart
def kpi_chart() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame(
{"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]}
)
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATORS, width=250, height=200)
)
return chart
def render_hub_user_link(hub_id):
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def obtain_top_users(user_ids_annotations: Dict[str, int], N: int = 50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=[NAME, NUMBER_ANNOTATIONS]
)
dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
dataframe = dataframe.sort_values(by=NUMBER_ANNOTATIONS, ascending=False)
return dataframe.head(N)
def fetch_data() -> None:
"""
This function fetches the data from the source and target datasets and updates the global variables.
"""
print(f"Starting to fetch data: {datetime.datetime.now()}")
global source_dataset, target_dataset, user_ids_annotations, annotated, remaining, percentage_completed, top_dataframe
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
annotated = len(target_dataset)
remaining = int(os.getenv("TARGET_RECORDS")) - annotated
percentage_completed = round(
(annotated / int(os.getenv("TARGET_RECORDS"))) * 100, 1
)
# Print the current date and time
print(f"Data fetched: {datetime.datetime.now()}")
def get_top(N = 50) -> pd.DataFrame:
return obtain_top_users(user_ids_annotations, N=N)
def main() -> None:
# Set the update interval
update_interval = 300 # seconds
update_interval_charts = 30 # seconds
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
)
fetch_data()
scheduler = BackgroundScheduler()
scheduler.add_job(
func=fetch_data, trigger="interval", seconds=update_interval, max_instances=1
)
scheduler.start()
# To avoid the orange border for the Gradio elements that are in constant loading
css = """
.generating {
border: none;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# 🌍 Tiếng Việt - Dự án Đánh giá Prompt Đa ngôn ngữ
Hugging Face và @argilla đang phát triển dự án [Dự án Đánh giá prompt Đa ngôn ngữ](https://github.com/huggingface/data-is-better-together/tree/main/prompt_translation). Đây là một chuẩn mực mở đa ngôn ngữ để đánh giá các mô hình ngôn ngữ, và tất nhiên, cũng dành cho tiếng Việt.
## Mục tiêu là dịch 500 Prompts
Và như mọi khi: cần có dữ liệu cho việc đó! Cộng đồng đã chọn ra 500 prompt tốt nhất sẽ tạo nên chuẩn mực đánh giá. Bằng tiếng Anh, tất nhiên.
**Đó là lý do chúng mình cần sự giúp đỡ của bạn**: nếu chúng ta cùng nhau dịch 500 prompts, chúng mình có thể thêm Tiếng Việt vào bảng xếp hạng.
## Cách tham gia
Truy cập vào [AI-Vietnam/prompt-translation-for-vie](https://huggingface.co/spaces/AI-Vietnam/prompt-translation-for-vie), đăng nhập hoặc tạo một tài khoản Hugging Face, và bạn có thể bắt đầu.
Cảm ơn các bạn rất nhiều! Bên cạnh đó, chúng mình đã dùng AI để chuẩn bị sẵn một đề xuất dịch giúp tăng tốc quá trình dịch thuật.
"""
)
gr.Markdown(
f"""
## 🚀 Tiến độ hiện tại
Cùng nhau xây dựng bộ dữ liệu này nhé!
"""
)
with gr.Row():
kpi_submitted_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_submitted,
inputs=[],
outputs=[kpi_submitted_plot],
every=update_interval_charts,
)
kpi_remaining_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart_remaining,
inputs=[],
outputs=[kpi_remaining_plot],
every=update_interval_charts,
)
donut_total_plot = gr.Plot(label="Plot")
demo.load(
donut_chart_total,
inputs=[],
outputs=[donut_total_plot],
every=update_interval_charts,
)
gr.Markdown(
"""
## 👾 Bảng xếp hạng
Tại đây bạn có thể thấy những người đóng góp hàng đầu và số lượng bản dịch họ đã thực hiện:
"""
)
with gr.Row():
kpi_hall_plot = gr.Plot(label="Plot")
demo.load(
kpi_chart, inputs=[], outputs=[kpi_hall_plot], every=update_interval_charts
)
top_df_plot = gr.Dataframe(
headers=[NAME, NUMBER_ANNOTATIONS],
datatype=[
"markdown",
"number",
],
row_count=50,
col_count=(2, "fixed"),
interactive=False,
every=update_interval,
)
demo.load(get_top, None, [top_df_plot], every=update_interval_charts)
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()
|