File size: 4,993 Bytes
7fd5c24
 
 
4a5d667
7fd5c24
 
 
dff4bb8
 
37b9ac3
 
dff4bb8
50c760b
769eaed
 
37b9ac3
769eaed
37b9ac3
7fd5c24
55e5d9c
042dd04
5ac0349
807cc13
 
5ac0349
37b9ac3
 
 
a600014
37b9ac3
4182d46
37b9ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
55e5d9c
042dd04
55e5d9c
042dd04
55e5d9c
c1e19ca
042dd04
55e5d9c
306fccf
 
55e5d9c
37b9ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd5c24
 
 
 
 
 
 
 
 
 
 
4a5d667
 
7fd5c24
 
 
 
 
 
 
37b9ac3
 
7fd5c24
 
 
 
 
 
 
 
 
 
 
 
042dd04
 
 
7fd5c24
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import torch
import re
import os
import gradio as gr
import requests

#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)

from sentence_transformers import SentenceTransformer, util
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity

#device = "cuda:0" if torch.cuda.is_available() else "cpu"
#model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') 

model_sts = SentenceTransformer('stsb-distilbert-base')
#model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens')

#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)

#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re

def Sort_Tuple(tup):  
  
	# (Sorts in descending order)  
	tup.sort(key = lambda x: x[1])  
	return tup[::-1]


def softmax(x):
	exps = np.exp(x)
	return np.divide(exps, np.sum(exps))
	
# Load pre-trained model 

model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)

#model  =  gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)

#model.eval()
#tokenizer =  gr.Interface.load('huggingface/distilgpt2')

#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')


def cloze_prob(text):

	whole_text_encoding = tokenizer.encode(text)
	# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
	text_list = text.split()
	stem = ' '.join(text_list[:-1])
	stem_encoding = tokenizer.encode(stem)
	# cw_encoding is just the difference between whole_text_encoding and stem_encoding
	# note: this might not correspond exactly to the word itself
	cw_encoding = whole_text_encoding[len(stem_encoding):]
	# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
	# Put the whole text encoding into a tensor, and get the model's comprehensive output
	tokens_tensor = torch.tensor([whole_text_encoding])
	
	with torch.no_grad():
		outputs = model(tokens_tensor)
		predictions = outputs[0]   

	logprobs = []
	# start at the stem and get downstream probabilities incrementally from the model(see above)
	start = -1-len(cw_encoding)
	for j in range(start,-1,1):
			raw_output = []
			for i in predictions[-1][j]:
					raw_output.append(i.item())
	
			logprobs.append(np.log(softmax(raw_output)))
			
	# if the critical word is three tokens long, the raw_probabilities should look something like this:
	# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
	# Then for the i'th token we want to find its associated probability
	# this is just: raw_probabilities[i][token_index]
	conditional_probs = []
	for cw,prob in zip(cw_encoding,logprobs):
			conditional_probs.append(prob[cw])
	# now that you have all the relevant probabilities, return their product.
	# This is the probability of the critical word given the context before it.

	return np.exp(np.sum(conditional_probs))





def cos_sim(a, b):
    return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))


  
def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
    caption = caption 
    visual_context_label= visual_context_label
    visual_context_prob = visual_context_prob
    caption_emb = model_sts.encode(caption, convert_to_tensor=True)
    visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True)


    sim =  cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
    sim = sim.cpu().numpy()
    sim = str(sim)[1:-1]
    sim = str(sim)[1:-1] 

    LM = cloze_prob(caption)
    #LM  = scorer.sentence_score(caption, reduce="mean")
    score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
    

    #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
    return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 }
    #return LM, sim, score 



demo = gr.Interface(
    fn=Visual_re_ranker,
    description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information",
    inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"),  gr.Textbox(value="0.7458009")],
    #outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"),  gr.Textbox(value="Belief revision score via visual context")],
    outputs="label",
)
demo.launch()