File size: 6,004 Bytes
7fd5c24 4a5d667 7fd5c24 dff4bb8 c6c0775 dff4bb8 37b9ac3 dff4bb8 50c760b 769eaed 37b9ac3 769eaed 37b9ac3 7fd5c24 55e5d9c 042dd04 5ac0349 807cc13 5ac0349 37b9ac3 a600014 37b9ac3 4182d46 37b9ac3 55e5d9c 8f47b61 55e5d9c 8f47b61 55e5d9c 8f47b61 55e5d9c 8f47b61 37b9ac3 86d638a 37b9ac3 86d638a 37b9ac3 86d638a 37b9ac3 86d638a 37b9ac3 86d638a 37b9ac3 8f47b61 37b9ac3 7fd5c24 4a5d667 7fd5c24 86d638a 37b9ac3 7fd5c24 042dd04 7fd5c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import torch
import re
import os
import gradio as gr
import requests
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from torch.nn.functional import softmax
import numpy as np
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)
from sentence_transformers import SentenceTransformer, util
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
#model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base')
model_sts = SentenceTransformer('stsb-distilbert-base')
#model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens')
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re
# Load pre-trained model
# model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
# #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
# #model.eval()
# #tokenizer = gr.Interface.load('huggingface/distilgpt2')
# #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# def cloze_prob(text):
# whole_text_encoding = tokenizer.encode(text)
# # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
# text_list = text.split()
# stem = ' '.join(text_list[:-1])
# stem_encoding = tokenizer.encode(stem)
# # cw_encoding is just the difference between whole_text_encoding and stem_encoding
# # note: this might not correspond exactly to the word itself
# cw_encoding = whole_text_encoding[len(stem_encoding):]
# # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
# # Put the whole text encoding into a tensor, and get the model's comprehensive output
# tokens_tensor = torch.tensor([whole_text_encoding])
# with torch.no_grad():
# outputs = model(tokens_tensor)
# predictions = outputs[0]
# logprobs = []
# # start at the stem and get downstream probabilities incrementally from the model(see above)
# start = -1-len(cw_encoding)
# for j in range(start,-1,1):
# raw_output = []
# for i in predictions[-1][j]:
# raw_output.append(i.item())
# logprobs.append(np.log(softmax(raw_output)))
# # if the critical word is three tokens long, the raw_probabilities should look something like this:
# # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
# # Then for the i'th token we want to find its associated probability
# # this is just: raw_probabilities[i][token_index]
# conditional_probs = []
# for cw,prob in zip(cw_encoding,logprobs):
# conditional_probs.append(prob[cw])
# # now that you have all the relevant probabilities, return their product.
# # This is the probability of the critical word given the context before it.
# return np.exp(np.sum(conditional_probs))
def sentence_prob_mean(text):
# Tokenize the input text and add special tokens
input_ids = tokenizer.encode(text, return_tensors='pt')
# Obtain model outputs
with torch.no_grad():
outputs = model(input_ids, labels=input_ids)
logits = outputs.logits # logits are the model outputs before applying softmax
# Shift logits and labels so that tokens are aligned:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = input_ids[..., 1:].contiguous()
# Calculate the softmax probabilities
probs = softmax(shift_logits, dim=-1)
# Gather the probabilities of the actual token IDs
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
# Compute the mean probability across the tokens
mean_prob = torch.mean(gathered_probs).item()
return mean_prob
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
caption = caption
visual_context_label= visual_context_label
visual_context_prob = visual_context_prob
caption_emb = model_sts.encode(caption, convert_to_tensor=True)
visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True)
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
sim = sim.cpu().numpy()
sim = str(sim)[1:-1]
sim = str(sim)[1:-1]
# LM = cloze_prob(caption)
LM = sentence_prob_mean(caption)
#LM = scorer.sentence_score(caption, reduce="mean")
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
#return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 }
#return LM, sim, score
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information",
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()
|