AisingioroHao0's picture
add huggingface space config
dd0f333
---
title: Artistic Portrait Generation
emoji: 🎨
colorFrom: yellow
colorTo: gray
sdk: gradio
sdk_version: 5.22.0
app_file: app.py
pinned: true
license: apache-2.0
models:
- AisingioroHao0/IP-Adapter-Art
- guozinan/PuLID
- stabilityai/stable-diffusion-xl-refiner-1.0
- xinsir/controlnet-openpose-sdxl-1.0
---
# IP Adapter Art:
<a href='https://huggingface.co/AisingioroHao0/IP-Adapter-Art'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a><a href=''><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-blue'></a> [![**IP Adapter Art Demo**](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kV7q3Gzr8GPG9cChdDQ5ncCx84TYjuu3?usp=sharing)
![image-20240807232402569](./README.assets/main.png)
------
## Introduction
IP Adapter Art is a specialized version that uses a professional style encoder. Its goal is to achieve style control through reference images in the text-to-image diffusion model and solve the problems of instability and incomplete stylization of existing methods. This is a preprint version, and more models and training data coming soon.
## How to use
[![**IP Adapter Art Demo**](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1kV7q3Gzr8GPG9cChdDQ5ncCx84TYjuu3?usp=sharing) can be used to conduct experiments directly.
For local experiments, please refer to a [demo](https://github.com/aihao2000/IP-Adapter-Art/blob/main/artistic_portrait_gen.ipynb).
Local experiments require a basic torch environment and dependencies:
```
conda create -n artadapter python=3.10
conda activate artadapter
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
pip install -e .
```
## Comparison with Existing Style Control Methods in Diffusion Models
Evaluation using [StyleBench](https://github.com/open-mmlab/StyleShot) style images. Image quality is evaluated using [improved aesthetic predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor)
| | CLIP Style Similarity | CSD Style Similarity | CLIP Text Alignment | Image Quality | Average |
| --------------------- | --------------------- | -------------------- | ------------------- | ------------- | --------- |
| DEADiff | 61.99 | 43.54 | 20.82 | 60.76 | 46.78 |
| StyleShot | 63.01 | 52.40 | 18.93 | 55.54 | 47.47 |
| Instant Style | 65.39 | 58.39 | 21.09 | 60.62 | 51.37 |
| **Art-Adapter(ours)** | **67.03** | **65.02** | 20.25 | **62.23** | **53.63** |
![image](./README.assets/comparison_with_existing_methods.jpg)
## Examples of Text-guided Stylized Generation
![image-20240808001612810](./README.assets/more_examples.png)
## Artistic Portrait Generation
### Pipeline
We built an artistic portrait generation pipeline using Art-Adapter, PuLID, and ControlNet. The structure is shown in the figure below.
![image-20240808001612811](./README.assets/artistic_portrait_generation_pipeline.jpg)
### Examples
![image-20240808001612812](./README.assets/artistic_portrait_generation_examples.jpg)
## Stylize ControlNet Parameter Visualization
![image-20240808001612813](./README.assets/stylize_controlnet_parameter_visualization.jpg)
## Citation
```
@misc{ipadapterart,
author = {Hao Ai, Xiaosai Zhang},
title = {IP Adapter Art},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/aihao2000/IP-Adapter-Art}}
}
```
## Acknowledgements