Spaces:
Sleeping
Sleeping
File size: 4,364 Bytes
96b8d46 beffd29 2df43d0 beffd29 0bee60e beffd29 0bee60e c429527 beffd29 3bfbf6c 4cf8def beffd29 2df43d0 beffd29 1da0f92 beffd29 2df43d0 beffd29 2df43d0 beffd29 2df43d0 beffd29 65f255a 4cf8def beffd29 2df43d0 beffd29 2df43d0 beffd29 1da0f92 2df43d0 0bee60e c429527 3b11899 0bee60e c429527 beffd29 0bee60e c429527 0bee60e c429527 beffd29 5f90122 caa3a8e 0bee60e beffd29 c429527 beffd29 624c73a b72b1f4 beffd29 0bee60e beffd29 b72b1f4 beffd29 0bee60e beffd29 612cecc c429527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import InferenceClient # Replaced AsyncInferenceClient with InferenceClient
from translatepy import Translator
import requests
import re
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
def enable_lora(lora_add, basemodel):
return basemodel if not lora_add else lora_add
def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1:
seed = random.randint(0, MAX_SEED)
print(seed)
seed = int(seed)
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
client = InferenceClient() # Using synchronous client instead of async
image = client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e:
print(f"Error generating image: {e}")
return None, None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e:
print(f"Error upscaling image: {e}")
return None
def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
image, seed = generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None:
return [None, None]
image_path = "temp_image.jpg"
image.save(image_path, format="JPEG")
if process_upscale:
upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
if upscale_image_path is not None:
upscale_image = Image.open(upscale_image_path)
upscale_image.save("upscale_image.jpg", format="JPEG")
return [image_path, "upscale_image.jpg"]
else:
print("Error: The scaled image path is None")
return [image_path, image_path]
else:
return [image_path, image_path]
css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3):
output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Image Description")
basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "hakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
process_lora = gr.Checkbox(label="LoRA Process")
process_upscale = gr.Checkbox(label="Scale Process")
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
with gr.Accordion(label="Advanced Options", open=False):
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280)
scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4)
seed = gr.Number(label="Seed", value=-1)
btn = gr.Button("Generate")
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
demo.launch() |