File size: 4,364 Bytes
96b8d46
beffd29
 
 
2df43d0
beffd29
0bee60e
 
beffd29
 
0bee60e
c429527
beffd29
 
3bfbf6c
4cf8def
beffd29
 
 
2df43d0
beffd29
 
 
1da0f92
beffd29
2df43d0
beffd29
2df43d0
 
beffd29
 
2df43d0
beffd29
 
 
 
65f255a
4cf8def
beffd29
 
2df43d0
beffd29
 
2df43d0
beffd29
1da0f92
2df43d0
0bee60e
c429527
3b11899
0bee60e
 
 
 
 
 
 
 
c429527
beffd29
0bee60e
c429527
0bee60e
c429527
beffd29
5f90122
 
 
caa3a8e
0bee60e
beffd29
 
 
c429527
beffd29
 
624c73a
b72b1f4
beffd29
 
 
0bee60e
beffd29
 
b72b1f4
 
 
beffd29
0bee60e
beffd29
612cecc
c429527
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import InferenceClient  # Replaced AsyncInferenceClient with InferenceClient
from translatepy import Translator
import requests
import re
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max


def enable_lora(lora_add, basemodel):
    return basemodel if not lora_add else lora_add

def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    try:
        if seed == -1:
            seed = random.randint(0, MAX_SEED)
            print(seed)
        seed = int(seed)
        
        text = str(Translator().translate(prompt, 'English')) + "," + lora_word
        client = InferenceClient()  # Using synchronous client instead of async
        image = client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
        return image, seed
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
    try:
        client = Client("finegrain/finegrain-image-enhancer") 
        result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
        return result[1]
    except Exception as e:
        print(f"Error upscaling image: {e}")
        return None

def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
    model = enable_lora(lora_model, basemodel) if process_lora else basemodel

    image, seed = generate_image(prompt, model, "", width, height, scales, steps, seed)
    if image is None:
        return [None, None]
    
    image_path = "temp_image.jpg"
    image.save(image_path, format="JPEG")
    
    if process_upscale:
        upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor)
        if upscale_image_path is not None:
            upscale_image = Image.open(upscale_image_path)
            upscale_image.save("upscale_image.jpg", format="JPEG")
            return [image_path, "upscale_image.jpg"]
        else:
            print("Error: The scaled image path is None")
            return [image_path, image_path]
    else:
        return [image_path, image_path]

css = """
#col-container{ margin: 0 auto; max-width: 1024px;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column(scale=3):
                output_res = ImageSlider(label="Flux / Upscaled")
            with gr.Column(scale=2):
                prompt = gr.Textbox(label="Image Description")
                basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "hakker-Labs/FLUX.1-dev-LoRA-add-details"], value="black-forest-labs/FLUX.1-schnell")
                lora_model_choice = gr.Dropdown(label="LoRA", choices=["XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="LoRA Process")
                process_upscale = gr.Checkbox(label="Scale Process")
                upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
                
                with gr.Accordion(label="Advanced Options", open=False):
                    width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=1280)
                    height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1280)
                    scales = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=4)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=4)
                    seed = gr.Number(label="Seed", value=-1)
    
                btn = gr.Button("Generate")
                btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
    demo.launch()