File size: 4,499 Bytes
9cc7e25
f7c4af0
 
9cc7e25
 
 
 
 
 
1e8f246
22cfb6e
ae3604c
 
535f0de
22e97cf
f7c4af0
 
 
 
 
 
 
 
22cfb6e
9cc7e25
 
 
 
 
a623cc7
 
 
 
 
 
9cc7e25
 
 
 
5ecd97e
 
1289ea0
5ecd97e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cc7e25
 
 
 
 
 
5ecd97e
9cc7e25
 
22cfb6e
 
1289ea0
 
 
 
 
1e8f246
 
ae3604c
 
 
22cfb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66a4894
bc9c343
22cfb6e
9cc7e25
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# import packages
import shutil
import os
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from sentence_transformers import SentenceTransformer
import chromadb
from datasets import load_dataset
# from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
from transformers import AutoTokenizer, MistralForCausalLM



# Function to clear the cache
def clear_cache(model_name):
    cache_dir = os.path.expanduser(f'~/.cache/torch/sentence_transformers/{model_name.replace("/", "_")}')
    if os.path.exists(cache_dir):
        shutil.rmtree(cache_dir)
        print(f"Cleared cache directory: {cache_dir}")
    else:
        print(f"No cache directory found for: {cache_dir}")


# Embedding vector
class VectorStore:
    def __init__(self, collection_name):
       # Initialize the embedding model
         # Initialize the embedding model with try-except block for better error handling
        try:
            self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
        except Exception as e:
            print(f"Error loading model: {e}")
            raise
        self.chroma_client = chromadb.Client()
        self.collection = self.chroma_client.create_collection(name=collection_name)

    # Method to populate the vector store with embeddings from a dataset
    def populate_vectors(self, dataset, batch_size=100):
        # Use dataset streaming
        dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]')

        # Process in batches
        texts = []
        for i, example in enumerate(dataset):
            title = example['title_cleaned']
            recipe = example['recipe_new']
            meal_type = example['meal_type']
            allergy = example['allergy_type']
            ingredients_alternative = example['ingredients_alternatives']

            # Concatenate the text from the columns
            text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
            texts.append(text)

            # Process the batch
            if (i + 1) % batch_size == 0:
                self._process_batch(texts, i)
                texts = []

        # Process the remaining texts
        if texts:
            self._process_batch(texts, i)

    def _process_batch(self, texts, batch_start_idx):
        embeddings = self.embedding_model.encode(texts, batch_size=len(texts)).tolist()
        for j, embedding in enumerate(embeddings):
            self.collection.add(embeddings=[embedding], documents=[texts[j]], ids=[str(batch_start_idx + j)])

    def search_context(self, query, n_results=1):
        query_embeddings = self.embedding_model.encode(query).tolist()
        return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)

# create a vector embedding
vector_store = VectorStore("embedding_vector")
vector_store.populate_vectors(dataset=None)


# Load the model and tokenizer
# text generation model
# model_name = "meta-llama/Meta-Llama-3-8B"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)

# load model orca-mini general purpose model
# tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
# model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")

model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

# Define the chatbot response function
def chatbot_response(user_input):
    global conversation_history
    results = vector_store.search_context(user_input, n_results=1)
    context = results['documents'][0] if results['documents'] else ""
    conversation_history.append(f"User: {user_input}\nContext: {context[:150]}\nBot:")
    inputs = tokenizer("\n".join(conversation_history), return_tensors="pt")
    outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    conversation_history.append(response)
    return response


# Gradio interface
def chat(user_input):
    response = chatbot_response(user_input)
    return response
css = ".gradio-container {background: url(https://upload.wikimedia.org/wikipedia/commons/f/f5/Spring_Kitchen_Line-Up_%28Unsplash%29.jpg)}"
iface = gr.Interface(fn=chat, inputs="text", outputs="text",css=css)
iface.launch()