Spaces:
Runtime error
Runtime error
File size: 4,499 Bytes
9cc7e25 f7c4af0 9cc7e25 1e8f246 22cfb6e ae3604c 535f0de 22e97cf f7c4af0 22cfb6e 9cc7e25 a623cc7 9cc7e25 5ecd97e 1289ea0 5ecd97e 9cc7e25 5ecd97e 9cc7e25 22cfb6e 1289ea0 1e8f246 ae3604c 22cfb6e 66a4894 bc9c343 22cfb6e 9cc7e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# import packages
import shutil
import os
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from sentence_transformers import SentenceTransformer
import chromadb
from datasets import load_dataset
# from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
from transformers import AutoTokenizer, MistralForCausalLM
# Function to clear the cache
def clear_cache(model_name):
cache_dir = os.path.expanduser(f'~/.cache/torch/sentence_transformers/{model_name.replace("/", "_")}')
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print(f"Cleared cache directory: {cache_dir}")
else:
print(f"No cache directory found for: {cache_dir}")
# Embedding vector
class VectorStore:
def __init__(self, collection_name):
# Initialize the embedding model
# Initialize the embedding model with try-except block for better error handling
try:
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
except Exception as e:
print(f"Error loading model: {e}")
raise
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(name=collection_name)
# Method to populate the vector store with embeddings from a dataset
def populate_vectors(self, dataset, batch_size=100):
# Use dataset streaming
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]')
# Process in batches
texts = []
for i, example in enumerate(dataset):
title = example['title_cleaned']
recipe = example['recipe_new']
meal_type = example['meal_type']
allergy = example['allergy_type']
ingredients_alternative = example['ingredients_alternatives']
# Concatenate the text from the columns
text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
texts.append(text)
# Process the batch
if (i + 1) % batch_size == 0:
self._process_batch(texts, i)
texts = []
# Process the remaining texts
if texts:
self._process_batch(texts, i)
def _process_batch(self, texts, batch_start_idx):
embeddings = self.embedding_model.encode(texts, batch_size=len(texts)).tolist()
for j, embedding in enumerate(embeddings):
self.collection.add(embeddings=[embedding], documents=[texts[j]], ids=[str(batch_start_idx + j)])
def search_context(self, query, n_results=1):
query_embeddings = self.embedding_model.encode(query).tolist()
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
# create a vector embedding
vector_store = VectorStore("embedding_vector")
vector_store.populate_vectors(dataset=None)
# Load the model and tokenizer
# text generation model
# model_name = "meta-llama/Meta-Llama-3-8B"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# load model orca-mini general purpose model
# tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
# model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
# Define the chatbot response function
def chatbot_response(user_input):
global conversation_history
results = vector_store.search_context(user_input, n_results=1)
context = results['documents'][0] if results['documents'] else ""
conversation_history.append(f"User: {user_input}\nContext: {context[:150]}\nBot:")
inputs = tokenizer("\n".join(conversation_history), return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
conversation_history.append(response)
return response
# Gradio interface
def chat(user_input):
response = chatbot_response(user_input)
return response
css = ".gradio-container {background: url(https://upload.wikimedia.org/wikipedia/commons/f/f5/Spring_Kitchen_Line-Up_%28Unsplash%29.jpg)}"
iface = gr.Interface(fn=chat, inputs="text", outputs="text",css=css)
iface.launch()
|