Spaces:
Sleeping
Sleeping
File size: 14,398 Bytes
f4e3196 21011da f4e3196 21011da f4e3196 4617742 167a0c6 e3d2180 4617742 167a0c6 7fd1a2d 094893c 4617742 094893c 167a0c6 feca41c f4e3196 21011da c0eefcc 4617742 c0eefcc 4617742 c0eefcc 4617742 c0eefcc 4617742 c0eefcc 4617742 c0eefcc 4617742 1fbf289 b9792ed 4617742 1fbf289 4617742 1fbf289 b9792ed c0eefcc b9792ed 1fbf289 b9792ed 1fbf289 b9792ed 1fbf289 b9792ed 1fbf289 4617742 b9792ed 1fbf289 4617742 1fbf289 4617742 f7b1e15 4617742 f7b1e15 167a0c6 4617742 167a0c6 4617742 9914b67 167a0c6 4617742 167a0c6 4617742 1fbf289 167a0c6 1fbf289 167a0c6 4617742 b9792ed 4617742 b9792ed 4617742 b9792ed 4617742 b9792ed 42ce81c 4617742 42ce81c 4617742 42ce81c 4617742 21011da 9f8ade6 4617742 42ce81c 4617742 f7b1e15 4617742 f7b1e15 42ce81c 4617742 42ce81c 4617742 42ce81c f7b1e15 4617742 42ce81c 4617742 c0eefcc 42ce81c 4617742 f7b1e15 4617742 9914b67 42ce81c 4617742 42ce81c 4617742 42ce81c 4617742 42ce81c 4617742 f7b1e15 4617742 42ce81c 4617742 42ce81c 4617742 42ce81c 4617742 42ce81c 4617742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import os,datetime
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import resample
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report
from joblib import dump, load
import numpy as np
import requests
import mysql.connector
from mysql.connector import Error
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/trigger_the_model_trainer")
async def train_the_model():
# Load the dataset
#file_path = 'model/trainer_data.csv' # Update to the correct file path 'model/trainer_data_new.csv'
#data = pd.read_csv(file_path)
csv_files = ['model/trainer_data.csv','model/trainer_data2.csv','model/trainer_data3.csv','model/trainer_data4.csv']
data_frames = [pd.read_csv(file) for file in csv_files]
# Step 4: Concatenate all DataFrames into a single DataFrame
data = pd.concat(data_frames, ignore_index=True)
#data = data.iloc[0:50000]
# Analyze class distribution
class_distribution = data['status_name'].value_counts()
print("Class Distribution before balancing:\n", class_distribution)
# Get the size of the largest class to match other classes' sizes
max_class_size = class_distribution.max()
# Oversampling
oversampled_data = pd.DataFrame()
for class_name, group in data.groupby('status_name'):
oversampled_group = resample(group,
replace=True, # Sample with replacement
n_samples=max_class_size, # to match majority class
random_state=123) # for reproducibility
oversampled_data = pd.concat([oversampled_data, oversampled_group], axis=0)
# Verify new class distribution
print("Class Distribution after oversampling:\n", oversampled_data['status_name'].value_counts())
# Save the balanced dataset if needed
#oversampled_data.to_csv('model/trainer_data_balanced.csv', index=False)
data = pd.read_csv("model/trainer_data_new.csv")
print(data["customer_name"].count())
data = pd.read_csv("model/trainer_data_balanced.csv")
print(data["customer_name"].count())
data = oversampled_data
print(data["customer_name"].count())
# Select columns
selected_columns = ['customer_name', 'customer_address', 'customer_phone_no',
'weight','cod','pickup_address','client_number','destination_city',
'status_name']
# Handling missing values
#data_filled = data[selected_columns].fillna('Missing')
data_filled = data[selected_columns].dropna()
# Encoding categorical variables
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
for col, encoder in encoders.items():
data_filled[col] = encoder.fit_transform(data_filled[col])
# Splitting the dataset
X = data_filled.drop('status_name', axis=1)
y = data_filled['status_name']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Parameters to use for the model
# Parameters to use for the model
"""params = {
'colsample_bytree': 0.3,
'learning_rate': 0.6,
'max_depth': 6,
'n_estimators': 100,
'subsample': 0.9,
'use_label_encoder': False,
'eval_metric': 'logloss'
}"""
params = {
'colsample_bytree': 0.9,
'learning_rate': 0.1,
'max_depth': 30,
'n_estimators': 600,
'subsample': 0.9,
'use_label_encoder': False,
'eval_metric': 'logloss'
}
# Initialize the classifier with the specified parameters
xgb = XGBClassifier(**params)
# Train the model
xgb.fit(X_train, y_train)
# Predict on the test set
y_pred = xgb.predict(X_test)
y_pred_proba = xgb.predict_proba(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
# Save the model
model_filename = 'model/transexpress_xgb_model.joblib'
dump(xgb, model_filename)
# Save the encoders
encoders_filename = 'model/transexpress_encoders.joblib'
dump(encoders, encoders_filename)
return accuracy,classification_rep,"Model trained with new data"
@app.get("/trigger_the_data_fecher")
async def get_data(page: str,paginate: str):
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
# Update the payload for each page
url = "https://report.transexpress.lk/api/orders/delivery-success-rate/return-to-client-orders?page="+page+"&per_page="+paginate
payload = {}
headers = {
'Cookie': 'development_trans_express_session=NaFDGzh5WQCFwiortxA6WEFuBjsAG9GHIQrbKZ8B'
}
response = requests.request("GET", url, headers=headers, data=payload)
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response["return_to_client_orders"]['data']
data_count = len(data)
df = pd.json_normalize(data)
df['status_name'] = df['status_name'].replace('Partially Delivered', 'Delivered')
df['status_name'] = df['status_name'].replace('Received by Client', 'Returned to Client')
print("data collected from page : "+page)
#return "done"
try:
file_path = 'model/trainer_data5.csv' # Replace with your file path
source_csv = pd.read_csv(file_path)
new_data = df
combined_df_final = pd.concat([source_csv,new_data], ignore_index=True)
combined_df_final.to_csv("model/trainer_data5.csv")
print("data added")
except:
df.to_csv("model/trainer_data5.csv")
print("data created")
print({"page_number":page,"data_count":data_count})
return {"page_number":page,"data_count":data_count}
@app.get("/get_module_versions")
async def get_versions():
try:
from pip._internal.operations import freeze
except ImportError: # pip < 10.0
from pip.operations import freeze
pkgs = freeze.freeze()
for pkg in pkgs:
print(pkg)
return pkgs
@app.get("/get_latest_model_updated_time")
async def model_updated_time():
try:
file_size = os.path.getsize("model/transexpress_xgb_model.joblib")
m_time_encoder = os.path.getmtime('model/transexpress_encoders.joblib')
m_time_model = os.path.getmtime('model/transexpress_xgb_model.joblib')
return {"base model created time ":datetime.datetime.fromtimestamp(m_time_encoder),
"last model updated time":datetime.datetime.fromtimestamp(m_time_model),
"The size of the file is bytes":file_size
}
except:
return {"no model found so first trained the model using data fecther"}
# Database connection parameters
DB_HOST = 'trans-prod-clone-staging.mysql.database.azure.com'
DB_PORT = 3306
DB_DATABASE = 'defaultdb'
DB_USERNAME = 'wwwdata'
DB_PASSWORD = 'fcLa8F3sxgNYQ$K@%'
# Connect to the database
#calling this function for each request
def fetch_customer_data(phone_number):
#local connection
connection = mysql.connector.connect(
host=DB_HOST,
port=DB_PORT,
database=DB_DATABASE,
user=DB_USERNAME,
password=DB_PASSWORD
)
#try:
if connection.is_connected():
print("Connected to the database")
# SQL query
query = """
SELECT
orders.customer_name AS customer_name,
orders.address AS customer_address,
orders.phone_no AS customer_phone_no,
primary_statuses.name AS status_name
FROM
orders
INNER JOIN
statuses ON orders.status_id = statuses.id
INNER JOIN
primary_statuses ON statuses.name = primary_statuses.key
WHERE orders.phone_no LIKE %s
"""
# Execute the query
cursor = connection.cursor(dictionary=True)
cursor.execute(query, (f"%{phone_number}%",))
# Fetch results
results = cursor.fetchall()
#print("Results:", results)
#close conection
#if connection.is_connected():
cursor.close()
connection.close()
print("Database connection closed")
return results
# except Error as e:
# print(f"Error: {e}")
# #close conection
# #if connection.is_connected():
# cursor.close()
# connection.close()
# print("Database connection closed")
# Endpoint for making predictions
@app.post("/predict")
async def predict(
date : str,
customer_name: str,
customer_address: str,
customer_phone: str,
weight: float,
cod: int,
pickup_address: str,
client_number:str,
destination_city:str
):
try:
# Load your trained model and encoders
xgb_model = load('model/transexpress_xgb_model.joblib')
encoders = load('model/transexpress_encoders.joblib')
except:
return {"no model found so first trained the model using data fecther"}
# Function to handle unseen labels during encoding
def safe_transform(encoder, column):
classes = encoder.classes_
return [encoder.transform([x])[0] if x in classes else -1 for x in column]
# Convert input data to DataFrame
input_data = {
'customer_name': customer_name,
'customer_address': customer_address,
'customer_phone_no': customer_phone,
'weight': float(weight),
'cod': int(cod),
'pickup_address':pickup_address,
'client_number':client_number,
'destination_city':destination_city
}
input_df = pd.DataFrame([input_data])
# Encode categorical variables using the same encoders used during training
for col in input_df.columns:
if col in encoders:
input_df[col] = safe_transform(encoders[col], input_df[col])
# Predict and obtain probabilities
pred = xgb_model.predict(input_df)
pred_proba = xgb_model.predict_proba(input_df)
import numpy as np
from urllib.parse import unquote
def extract_phone_numbers(customer_phone):
# Decode URL-encoded phone numbers
decoded_phone = unquote(customer_phone)
# Split into a list of phone numbers
phone_numbers = [phone.strip() for phone in decoded_phone.split('/')]
# Handle case where there is a single phone number
if len(phone_numbers) == 1 and phone_numbers[0]:
return phone_numbers
elif len(phone_numbers) == 0:
return []
return phone_numbers
def calculate_delivery_factor(phone_number):
# Replace with the desired customer name and phone number
#customer_phone_no = '0773224384'
json = fetch_customer_data(phone_number)
data = json
#print(url,data)
# Filter only relevant status names
valid_statuses = ['Failed to Deliver', 'Delivered', 'Returned to Client']
relevant_orders = [order for order in data if order['status_name'] in valid_statuses]
if not relevant_orders:
base_probability = 0.50
else:
delivered_count = sum(1 for order in relevant_orders if order['status_name'] == 'Delivered')
total_orders_count = len(relevant_orders)
base_probability = delivered_count / total_orders_count
base_probability = max(0.05, min(base_probability, 0.95))
# Add a narrower random component
random_component = np.random.uniform(-0.05, 0.05)
adjusted_probability = base_probability + random_component
return adjusted_probability
try:
print(customer_phone)
phone_numbers = extract_phone_numbers(customer_phone)
print(phone_numbers, "api calling ......")
probability = calculate_delivery_factor(phone_numbers[0])
probability = round((probability * 100),2)
#probability = f"{probability:.2f}" probability = f"{float(probability):.2f}"
print(f"new model probability: {probability}")
predicted_status = "delivered"
# Output
except Exception as e:
print(f"Error: {e}")
predicted_status = "Unknown" if pred[0] == -1 else encoders['status_name'].inverse_transform([pred])[0]
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
print(str(predicted_status),probability)
if probability>98:
probability = probability-1
if predicted_status == "Returned to Client":
probability = 100 - probability
return {"Probability": round(probability,2),"predicted_status":predicted_status}
|