File size: 2,143 Bytes
aa7f5a4
 
1bf7e66
 
bd8d813
aa7f5a4
e4f9c2a
aa7f5a4
4b8f05e
 
e4f9c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c5dac1
e4f9c2a
 
 
 
bd8d813
aa7f5a4
 
13c3404
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st  #Web App
from transformers import pipeline
import numpy as np 
import pandas as pd

#title
st.title("Toxic Tweets")

model = st.selectbox("Which pretrained model would you like to use?",("roberta-large-mnli","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))

d = {'col1':[1,2],'col2':[3,4]}
data = pd.DataFrame(data=d)
st.table(data)


# data = []
# text = st.text_input("Enter text here:","Artificial Intelligence is useful")
# data.append(text)
# if model == "roberta-large-mnli":
#     #1
#     if st.button("Run Sentiment Analysis of Text"): 
#         model_path = "roberta-large-mnli"
#         sentiment_pipeline = pipeline(model=model_path)
#         result = sentiment_pipeline(data)
#         label = result[0]["label"]
#         score = result[0]["score"]
#         st.write("The classification of the given text is " + label + " with a score of " + str(score))
# elif model == "twitter-XLM-roBERTa-base":
#     #2
#     if st.button("Run Sentiment Analysis of Text"): 
#         model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
#         sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
#         result = sentiment_task(text)
#         label = result[0]["label"].capitalize()
#         score = result[0]["score"]
#         st.write("The classification of the given text is " + label + " with a score of " + str(score))

# elif model == "bertweet-sentiment-analysis": 
#     #3 
#     if st.button("Run Sentiment Analysis of Text"): 
#         analyzer = create_analyzer(task="sentiment", lang="en")
#         result = analyzer.predict(text)
#         if result.output == "POS": 
#             label = "POSITIVE"
#         elif result.output == "NEU": 
#             label = "NEUTRAL"
#         else: 
#             label = "NEGATIVE"
        
#         neg = result.probas["NEG"]
#         pos = result.probas["POS"]
#         neu = result.probas["NEU"]
#         st.write("The classification of the given text is " + label + " with the scores broken down as: Positive - " + str(pos) + ", Neutral - " + str(neu) + ", Negative - " + str(neg))