File size: 8,974 Bytes
4b89d6b
 
436c4c1
 
ea7f5b6
 
 
 
63b3783
ea7f5b6
436c4c1
 
92afc5b
ee305a4
 
436c4c1
 
 
 
ee305a4
ea7f5b6
 
 
ee305a4
 
 
436c4c1
ee305a4
436c4c1
 
ee305a4
 
 
 
 
63b3783
ee305a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436c4c1
 
63b3783
ee305a4
 
 
 
 
 
 
63b3783
ee305a4
 
 
63b3783
 
2493822
ee305a4
 
 
63b3783
ee305a4
 
 
63b3783
 
 
 
 
ee305a4
63b3783
 
 
436c4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
960f419
 
 
ea7f5b6
 
 
 
 
 
 
 
 
92afc5b
ea7f5b6
 
ee305a4
 
 
 
 
960f419
63b3783
 
5d9cd0b
63b3783
 
 
 
 
 
 
 
 
5d9cd0b
ea7f5b6
ee305a4
63b3783
 
 
 
 
ea7f5b6
436c4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7f5b6
436c4c1
ea7f5b6
63b3783
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import nltk
nltk.download('stopwords')
# from transformers import AutoTokenizer
# from transformers import AutoModelForSeq2SeqLM
import plotly.graph_objs as go
from transformers import pipeline
import random
import gradio as gr
from tree import generate_subplot1, generate_subplot2
from paraphraser import generate_paraphrase
from lcs import find_common_subsequences, find_common_gram_positions
from highlighter import highlight_common_words, highlight_common_words_dict, reparaphrased_sentences_html
from entailment import analyze_entailment
from masking_methods import mask_non_stopword, mask_non_stopword_pseudorandom, high_entropy_words
from sampling_methods import sample_word
from detectability import SentenceDetectabilityCalculator
from distortion import SentenceDistortionCalculator
from euclidean_distance import SentenceEuclideanDistanceCalculator
from threeD_plot import gen_three_D_plot


# Function for the Gradio interface
def model(prompt):
    user_prompt = prompt
    paraphrased_sentences = generate_paraphrase(user_prompt)
    analyzed_paraphrased_sentences, selected_sentences, discarded_sentences = analyze_entailment(user_prompt, paraphrased_sentences, 0.7)
    print(analyze_entailment(user_prompt, paraphrased_sentences, 0.7))
    common_grams = find_common_subsequences(user_prompt, selected_sentences)
    subsequences = [subseq for _, subseq in common_grams]
    common_grams_position = find_common_gram_positions(selected_sentences, subsequences)

    masked_sentences = []
    masked_words = []
    masked_logits = []

    for sentence in paraphrased_sentences:
        masked_sent, logits, words = mask_non_stopword(sentence)
        masked_sentences.append(masked_sent)
        masked_words.append(words)
        masked_logits.append(logits)
        
        masked_sent, logits, words = mask_non_stopword_pseudorandom(sentence)
        masked_sentences.append(masked_sent)
        masked_words.append(words)
        masked_logits.append(logits)
        
        masked_sent, logits, words = high_entropy_words(sentence, common_grams)
        masked_sentences.append(masked_sent)
        masked_words.append(words)
        masked_logits.append(logits)

    sampled_sentences = []
    for masked_sent, words, logits in zip(masked_sentences, masked_words, masked_logits):
        sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='inverse_transform', temperature=1.0))
        sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='exponential_minimum', temperature=1.0))
        sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='temperature', temperature=1.0))
        sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='greedy', temperature=1.0))




    colors = ["red", "blue", "brown", "green"]

    def select_color():
        return random.choice(colors)

    highlight_info = [(word, select_color()) for _, word in common_grams]

    highlighted_user_prompt = highlight_common_words(common_grams, [user_prompt], "Non-melting Points in the User Prompt")
    highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
    highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")

    trees1 = []
    trees2 = []

    masked_index = 0
    sampled_index = 0

    for i, sentence in enumerate(paraphrased_sentences):
        next_masked_sentences = masked_sentences[masked_index:masked_index + 3]
        next_sampled_sentences = sampled_sentences[sampled_index:sampled_index + 12]

        tree1 = generate_subplot1(sentence, next_masked_sentences, highlight_info, common_grams)
        trees1.append(tree1)

        tree2 = generate_subplot2(next_masked_sentences, next_sampled_sentences, highlight_info, common_grams)
        trees2.append(tree2)

        masked_index += 3 
        sampled_index += 12

    reparaphrased_sentences = generate_paraphrase(sampled_sentences)

    len_reparaphrased_sentences = len(reparaphrased_sentences)

    reparaphrased_sentences_list = []

    # Process the sentences in batches of 10
    for i in range(0, len_reparaphrased_sentences, 10):
        # Get the current batch of 10 sentences
        batch = reparaphrased_sentences[i:i + 10]
        
        # Check if the batch has exactly 10 sentences
        if len(batch) == 10:
            # Call the display_sentences function and store the result in the list
            html_block = reparaphrased_sentences_html(batch)
            reparaphrased_sentences_list.append(html_block)

    distortion_list = []
    detectability_list = []
    euclidean_dist_list = []

    distortion_calculator = SentenceDistortionCalculator(user_prompt, reparaphrased_sentences)
    distortion_calculator.calculate_all_metrics()
    distortion_calculator.normalize_metrics()
    distortion_calculator.calculate_combined_distortion()

    distortion = distortion_calculator.get_combined_distortions()

    for each in distortion.items():
        distortion_list.append(each[1])

    detectability_calculator = SentenceDetectabilityCalculator(user_prompt, reparaphrased_sentences)
    detectability_calculator.calculate_all_metrics()
    detectability_calculator.normalize_metrics()
    detectability_calculator.calculate_combined_detectability()

    detectability = detectability_calculator.get_combined_detectabilities()

    for each in detectability.items():
        detectability_list.append(each[1])

    euclidean_dist_calculator = SentenceEuclideanDistanceCalculator(user_prompt, reparaphrased_sentences)
    euclidean_dist_calculator.calculate_all_metrics()
    euclidean_dist_calculator.normalize_metrics()
    euclidean_dist_calculator.get_normalized_metrics()

    euclidean_dist = detectability_calculator.get_combined_detectabilities()

    for each in euclidean_dist.items():
        euclidean_dist_list.append(each[1])

    three_D_plot = gen_three_D_plot(detectability_list, distortion_list, euclidean_dist_list)

    return [highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + trees1 + trees2 + reparaphrased_sentences_list + [three_D_plot]


with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("# **AIISC Watermarking Model**")

    with gr.Row():
        user_input = gr.Textbox(label="User Prompt")

    with gr.Row():
        submit_button = gr.Button("Submit")
        clear_button = gr.Button("Clear")

    with gr.Row():
        highlighted_user_prompt = gr.HTML()

    with gr.Row():
        with gr.Tabs():
            with gr.TabItem("Paraphrased Sentences"):
                highlighted_accepted_sentences = gr.HTML()
            with gr.TabItem("Discarded Sentences"):
                highlighted_discarded_sentences = gr.HTML()

    # Adding labels before the tree plots
    with gr.Row():
        gr.Markdown("### Where to Watermark?")  # Label for masked sentences trees
    with gr.Row():
        with gr.Tabs():
            tree1_tabs = []
            for i in range(10):  # Adjust this range according to the number of trees
                with gr.TabItem(f"Sentence {i+1}"):
                    tree1 = gr.Plot()
                    tree1_tabs.append(tree1)

    with gr.Row():
        gr.Markdown("### How to Watermark?")  # Label for sampled sentences trees
    with gr.Row():
        with gr.Tabs():
            tree2_tabs = []
            for i in range(10):  # Adjust this range according to the number of trees
                with gr.TabItem(f"Sentence {i+1}"):
                    tree2 = gr.Plot()
                    tree2_tabs.append(tree2)

        # Adding the "Re-paraphrased Sentences" section
    with gr.Row():
        gr.Markdown("### Re-paraphrased Sentences")  # Label for re-paraphrased sentences

    # Adding tabs for the re-paraphrased sentences
    with gr.Row():
        with gr.Tabs():
            reparaphrased_sentences_tabs = []
            for i in range(120):  # 120 tabs for 120 batches of sentences
                with gr.TabItem(f"Sentence {i+1}"):
                    reparaphrased_sent_html = gr.HTML()  # Placeholder for each batch
                    reparaphrased_sentences_tabs.append(reparaphrased_sent_html)

    with gr.Row():
        gr.Markdown("### 3D Plot for Sweet Spot")
    with gr.Row():
        three_D_plot = gr.Plot()


    submit_button.click(model, inputs=user_input, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot])
    clear_button.click(lambda: "", inputs=None, outputs=user_input)
    clear_button.click(lambda: "", inputs=None, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot])

demo.launch(share=True)