File size: 8,974 Bytes
4b89d6b 436c4c1 ea7f5b6 63b3783 ea7f5b6 436c4c1 92afc5b ee305a4 436c4c1 ee305a4 ea7f5b6 ee305a4 436c4c1 ee305a4 436c4c1 ee305a4 63b3783 ee305a4 436c4c1 63b3783 ee305a4 63b3783 ee305a4 63b3783 2493822 ee305a4 63b3783 ee305a4 63b3783 ee305a4 63b3783 436c4c1 ea7f5b6 960f419 ea7f5b6 92afc5b ea7f5b6 ee305a4 960f419 63b3783 5d9cd0b 63b3783 5d9cd0b ea7f5b6 ee305a4 63b3783 ea7f5b6 436c4c1 ea7f5b6 436c4c1 ea7f5b6 63b3783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import nltk
nltk.download('stopwords')
# from transformers import AutoTokenizer
# from transformers import AutoModelForSeq2SeqLM
import plotly.graph_objs as go
from transformers import pipeline
import random
import gradio as gr
from tree import generate_subplot1, generate_subplot2
from paraphraser import generate_paraphrase
from lcs import find_common_subsequences, find_common_gram_positions
from highlighter import highlight_common_words, highlight_common_words_dict, reparaphrased_sentences_html
from entailment import analyze_entailment
from masking_methods import mask_non_stopword, mask_non_stopword_pseudorandom, high_entropy_words
from sampling_methods import sample_word
from detectability import SentenceDetectabilityCalculator
from distortion import SentenceDistortionCalculator
from euclidean_distance import SentenceEuclideanDistanceCalculator
from threeD_plot import gen_three_D_plot
# Function for the Gradio interface
def model(prompt):
user_prompt = prompt
paraphrased_sentences = generate_paraphrase(user_prompt)
analyzed_paraphrased_sentences, selected_sentences, discarded_sentences = analyze_entailment(user_prompt, paraphrased_sentences, 0.7)
print(analyze_entailment(user_prompt, paraphrased_sentences, 0.7))
common_grams = find_common_subsequences(user_prompt, selected_sentences)
subsequences = [subseq for _, subseq in common_grams]
common_grams_position = find_common_gram_positions(selected_sentences, subsequences)
masked_sentences = []
masked_words = []
masked_logits = []
for sentence in paraphrased_sentences:
masked_sent, logits, words = mask_non_stopword(sentence)
masked_sentences.append(masked_sent)
masked_words.append(words)
masked_logits.append(logits)
masked_sent, logits, words = mask_non_stopword_pseudorandom(sentence)
masked_sentences.append(masked_sent)
masked_words.append(words)
masked_logits.append(logits)
masked_sent, logits, words = high_entropy_words(sentence, common_grams)
masked_sentences.append(masked_sent)
masked_words.append(words)
masked_logits.append(logits)
sampled_sentences = []
for masked_sent, words, logits in zip(masked_sentences, masked_words, masked_logits):
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='inverse_transform', temperature=1.0))
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='exponential_minimum', temperature=1.0))
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='temperature', temperature=1.0))
sampled_sentences.append(sample_word(masked_sent, words, logits, sampling_technique='greedy', temperature=1.0))
colors = ["red", "blue", "brown", "green"]
def select_color():
return random.choice(colors)
highlight_info = [(word, select_color()) for _, word in common_grams]
highlighted_user_prompt = highlight_common_words(common_grams, [user_prompt], "Non-melting Points in the User Prompt")
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
trees1 = []
trees2 = []
masked_index = 0
sampled_index = 0
for i, sentence in enumerate(paraphrased_sentences):
next_masked_sentences = masked_sentences[masked_index:masked_index + 3]
next_sampled_sentences = sampled_sentences[sampled_index:sampled_index + 12]
tree1 = generate_subplot1(sentence, next_masked_sentences, highlight_info, common_grams)
trees1.append(tree1)
tree2 = generate_subplot2(next_masked_sentences, next_sampled_sentences, highlight_info, common_grams)
trees2.append(tree2)
masked_index += 3
sampled_index += 12
reparaphrased_sentences = generate_paraphrase(sampled_sentences)
len_reparaphrased_sentences = len(reparaphrased_sentences)
reparaphrased_sentences_list = []
# Process the sentences in batches of 10
for i in range(0, len_reparaphrased_sentences, 10):
# Get the current batch of 10 sentences
batch = reparaphrased_sentences[i:i + 10]
# Check if the batch has exactly 10 sentences
if len(batch) == 10:
# Call the display_sentences function and store the result in the list
html_block = reparaphrased_sentences_html(batch)
reparaphrased_sentences_list.append(html_block)
distortion_list = []
detectability_list = []
euclidean_dist_list = []
distortion_calculator = SentenceDistortionCalculator(user_prompt, reparaphrased_sentences)
distortion_calculator.calculate_all_metrics()
distortion_calculator.normalize_metrics()
distortion_calculator.calculate_combined_distortion()
distortion = distortion_calculator.get_combined_distortions()
for each in distortion.items():
distortion_list.append(each[1])
detectability_calculator = SentenceDetectabilityCalculator(user_prompt, reparaphrased_sentences)
detectability_calculator.calculate_all_metrics()
detectability_calculator.normalize_metrics()
detectability_calculator.calculate_combined_detectability()
detectability = detectability_calculator.get_combined_detectabilities()
for each in detectability.items():
detectability_list.append(each[1])
euclidean_dist_calculator = SentenceEuclideanDistanceCalculator(user_prompt, reparaphrased_sentences)
euclidean_dist_calculator.calculate_all_metrics()
euclidean_dist_calculator.normalize_metrics()
euclidean_dist_calculator.get_normalized_metrics()
euclidean_dist = detectability_calculator.get_combined_detectabilities()
for each in euclidean_dist.items():
euclidean_dist_list.append(each[1])
three_D_plot = gen_three_D_plot(detectability_list, distortion_list, euclidean_dist_list)
return [highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + trees1 + trees2 + reparaphrased_sentences_list + [three_D_plot]
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# **AIISC Watermarking Model**")
with gr.Row():
user_input = gr.Textbox(label="User Prompt")
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
with gr.Row():
highlighted_user_prompt = gr.HTML()
with gr.Row():
with gr.Tabs():
with gr.TabItem("Paraphrased Sentences"):
highlighted_accepted_sentences = gr.HTML()
with gr.TabItem("Discarded Sentences"):
highlighted_discarded_sentences = gr.HTML()
# Adding labels before the tree plots
with gr.Row():
gr.Markdown("### Where to Watermark?") # Label for masked sentences trees
with gr.Row():
with gr.Tabs():
tree1_tabs = []
for i in range(10): # Adjust this range according to the number of trees
with gr.TabItem(f"Sentence {i+1}"):
tree1 = gr.Plot()
tree1_tabs.append(tree1)
with gr.Row():
gr.Markdown("### How to Watermark?") # Label for sampled sentences trees
with gr.Row():
with gr.Tabs():
tree2_tabs = []
for i in range(10): # Adjust this range according to the number of trees
with gr.TabItem(f"Sentence {i+1}"):
tree2 = gr.Plot()
tree2_tabs.append(tree2)
# Adding the "Re-paraphrased Sentences" section
with gr.Row():
gr.Markdown("### Re-paraphrased Sentences") # Label for re-paraphrased sentences
# Adding tabs for the re-paraphrased sentences
with gr.Row():
with gr.Tabs():
reparaphrased_sentences_tabs = []
for i in range(120): # 120 tabs for 120 batches of sentences
with gr.TabItem(f"Sentence {i+1}"):
reparaphrased_sent_html = gr.HTML() # Placeholder for each batch
reparaphrased_sentences_tabs.append(reparaphrased_sent_html)
with gr.Row():
gr.Markdown("### 3D Plot for Sweet Spot")
with gr.Row():
three_D_plot = gr.Plot()
submit_button.click(model, inputs=user_input, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot])
clear_button.click(lambda: "", inputs=None, outputs=user_input)
clear_button.click(lambda: "", inputs=None, outputs=[highlighted_user_prompt, highlighted_accepted_sentences, highlighted_discarded_sentences] + tree1_tabs + tree2_tabs + reparaphrased_sentences_tabs + [three_D_plot])
demo.launch(share=True)
|