Spaces:
Sleeping
Sleeping
File size: 19,616 Bytes
22b1013 a037d13 36319c9 a037d13 36319c9 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 298d2e0 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 36319c9 a037d13 36319c9 a037d13 22b1013 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 99a4862 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 a037d13 36319c9 22b1013 36319c9 a037d13 36319c9 a037d13 245d66c e449698 245d66c a037d13 36319c9 22b1013 36319c9 a037d13 22b1013 1c68ca4 a037d13 8845dcb 5a1d695 a037d13 1c68ca4 8845dcb 5a1d695 a037d13 e74aedd 1c68ca4 dc1d420 45a9c9f dc1d420 e74aedd 1c68ca4 a037d13 1c68ca4 a037d13 8845dcb 5a1d695 e74aedd 5a1d695 1c68ca4 dc1d420 e74aedd 1c68ca4 a037d13 8845dcb 5a1d695 a037d13 8845dcb 5a1d695 a037d13 1c68ca4 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 22b1013 a037d13 8845dcb d56b068 22b1013 a037d13 d56b068 22b1013 1c68ca4 22b1013 d580c4b 5a1d695 859a84d 1c68ca4 d580c4b 22b1013 d580c4b 5a1d695 859a84d 1c68ca4 d580c4b 22b1013 1c68ca4 22b1013 d580c4b 5a1d695 859a84d 1c68ca4 22b1013 d580c4b 5a1d695 859a84d 1c68ca4 d580c4b a037d13 1c68ca4 a037d13 22b1013 a037d13 36319c9 5e3b938 22b1013 5e3b938 22b1013 d580c4b 5a1d695 859a84d ab16e67 22b1013 07a2bd6 ab16e67 22b1013 ab16e67 22b1013 07a2bd6 ab16e67 e74aedd 07a2bd6 ab16e67 e74aedd 22b1013 d580c4b 5a1d695 859a84d 1c68ca4 22b1013 e74aedd 22b1013 36319c9 a037d13 22b1013 a037d13 bd76011 a037d13 36319c9 a037d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import re
import torch
import time
import pinecone
import pickle
import os
import numpy as np
import hashlib
import gradio as gr
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from torch import nn
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers import SentenceTransformer
from peft import PeftModel
from bs4 import BeautifulSoup
import requests
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit 537.36 (KHTML, like Gecko) Chrome",
"Accept": "text/html,application/xhtml+xml,application/xml; q=0.9,image/webp,*/*;q=0.8",
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ",
}
def google_search(text):
print(f"Google search on: {text}")
try:
site = requests.get(f"https://www.google.com/search?hl=en&q={text}", headers=headers)
main = (
BeautifulSoup(site.text, features="html.parser").select_one("#main").select(".VwiC3b.lyLwlc.yDYNvb.W8l4ac")
)
res = []
for m in main:
t = m.get_text()
if "—" in t:
t = t[len("—") + t.index("—") :].strip()
res.append(t)
ans = " \n".join(res)
except Exception as ex:
print(f"Error: {ex}")
ans = ""
print(f"The result of the google search is: {ans}")
return ans
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
pinecone.init(api_key=PINECONE_API_KEY, environment="gcp-starter")
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
CACHE_DIR = "./.cache"
INDEX_NAME = "k8s-semantic-search"
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
def cached(func):
def wrapper(*args, **kwargs):
SEP = "$|$"
cache_token = (
f"{func.__name__}{SEP}"
f"{SEP.join(str(arg) for arg in args)}{SEP}"
f"{SEP.join( str(key) + SEP * 2 + str(val) for key, val in kwargs.items())}"
)
hex_hash = hashlib.sha256(cache_token.encode()).hexdigest()
cache_filename: str = os.path.join(CACHE_DIR, f"{hex_hash}")
if os.path.exists(cache_filename):
with open(cache_filename, "rb") as cache_file:
return pickle.load(cache_file)
result = func(*args, **kwargs)
with open(cache_filename, "wb") as cache_file:
pickle.dump(result, cache_file)
return result
return wrapper
@cached
def create_embedding(text: str):
embed_text = sentencetransformer_model.encode(text)
return embed_text.tolist()
index = pinecone.Index(INDEX_NAME)
def query_from_pinecone(query, top_k=3):
embedding = create_embedding(query)
if not embedding:
return None
return index.query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text)
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
if not results_from_pinecone:
return []
if verbose:
print("Query:", query)
final_results = []
if re_rank:
if verbose:
print("Document ID (Hash)\t\tRetrieval Score\tCE Score\tText")
sentence_combinations = [
[query, result_from_pinecone["metadata"]["text"]] for result_from_pinecone in results_from_pinecone
]
# Compute the similarity scores for these combinations
similarity_scores = cross_encoder.predict(sentence_combinations, activation_fct=nn.Sigmoid())
# Sort the scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Print the scores
for idx in sim_scores_argsort:
result_from_pinecone = results_from_pinecone[idx]
final_results.append(result_from_pinecone)
if verbose:
print(
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{similarity_scores[idx]:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
if verbose:
print("Document ID (Hash)\t\tRetrieval Score\tText")
for result_from_pinecone in results_from_pinecone:
final_results.append(result_from_pinecone)
if verbose:
print(
f"{result_from_pinecone['id']}\t{result_from_pinecone['score']:.2f}\t{result_from_pinecone['metadata']['text'][:50]}"
)
return final_results
def semantic_search(prompt):
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
if not final_results:
return ""
return "\n\n".join(res["metadata"]["text"].strip() for res in final_results[:3])
base_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
lora_model_id = "ComponentSoft/mistral-kubectl-instruct"
tokenizer = AutoTokenizer.from_pretrained(
lora_model_id,
padding_side="left",
add_eos_token=False,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
use_cache=True,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(base_model, lora_model_id)
model.eval()
def create_stop_criterion(*args):
term_tokens = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in args]
class CustomStopCriterion(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, score: torch.FloatTensor, **kwargs):
return any(torch.equal(e, input_ids[0][-len(e) :]) for e in term_tokens)
return CustomStopCriterion()
eval_stop_criterion = create_stop_criterion("</s>", "#End")
category_stop_criterion = create_stop_criterion("</s>", "\n")
start_template = "### Answer:"
command_template = "# Command:"
end_template = "#End"
def str_to_md(text):
def escape_hash(line):
i = 0
while i < len(line) and line[i] == ' ':
i+=1
if i == len(line):
return line
if line[i] == '#':
line = line[:i] + '\\' + line[i:]
return line
lines = text.split('\n')
lines = [escape_hash(line) for line in lines]
return ' \n'.join(lines)
def text_to_text_generation(verbose, prompt):
prompt = prompt.strip()
is_kubectl_prompt = (
f"You are a helpful assistant who classifies prompts into three categories. [INST] Respond with 0 if it pertains to a 'kubectl' operation. This is an instruction that can be answered with a 'kubectl' action. Look for keywords like 'get', 'list', 'create', 'show', 'view', and other command-like words. This category is an instruction instead of a question. Respond with 1 only if the prompt is a question, and is about a definition related to Kubernetes, or non-action inquiries. Respond with 2 every other scenario, for example if the question is a general question, not related to Kubernetes or 'kubectl'.\n"
f"Here are some examples:\n"
f"text: List all pods in Kubernetes\n"
f"response (0/1/2): 0 \n"
f"text: What is a headless service and how to create one?\n"
f"response (0/1/2): 1 \n"
f"text: What is the capital of Hungary?\n"
f"response (0/1/2): 2 \n"
f"text: Display detailed information about the pod 'web-app-pod-1'\n"
f"response (0/1/2): 0 \n"
f"text: What are some typical foods in Germany?\n"
f"response (0/1/2): 2 \n"
f"text: What is a LoadBalancer in Kubernetes?\n"
f"response (0/1/2): 1 \n"
f"text: How can I enhance the performance of a k8s cluster?\n"
f"response (0/1/2): 1 \n"
f'Classify the following: [/INST] \ntext: "{prompt}\n"'
f"response (0/1/2): "
)
model_input = tokenizer(is_kubectl_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
response = tokenizer.decode(
model.generate(
**model_input,
max_new_tokens=8,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([category_stop_criterion]),
)[0],
skip_special_tokens=True,
)
response = response[len(is_kubectl_prompt) :]
response_num = 0 if "0" in response else (1 if "1" in response else 2)
def create_generation_prompt(response_num, prompt, retriever):
md = ""
match response_num:
case 0:
prompt = f"[INST] {prompt}\n Lets think step by step. [/INST] {start_template}"
print('Kubectl command prompt:')
print(prompt)
case 1:
if retriever == "semantic_search":
question = prompt
print('Semantic search prompt:')
print(
(
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer: \n")
)
retrieved_results = semantic_search(prompt)
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer:\n\n"
md = (
f"### Step 1: Preparing prompt for additional documentation \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n"
f"### Step 2: Retrieving documentation from a book. \n\n"
f"{str_to_md(retrieved_results)} \n\n"
f"### Step 3: Creating full prompt given to model \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_BOOK] [INST] Answer the following question: {question} [/INST]\nAnswer:"
)
elif retriever == "google_search":
retrieved_results = google_search(prompt)
question = prompt
prompt = f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: {retrieved_results} </s>\n<s> [INST] Answer the following question: {prompt} [/INST]\nAnswer: "
print('Google search prompt:')
print(
(
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:\n\n"
)
)
md = (
f"### Step 1: Preparing prompt for additional documentation \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: \n\n"
f"### Step 2: Retrieving documentation from Google. \n\n"
f"{str_to_md(retrieved_results)} \n\n"
f"### Step 3: Creating full prompt given to model \n\n"
f"You are a helpful kubernetes professional. [INST] Use the following documentation, if it is relevant to answer the question below. [/INST]\nDocumentation: [RETRIEVED_RESULTS_FROM_GOOGLE] [INST] Answer the following question: {question} [/INST]\nAnswer:"
)
else:
prompt = f"[INST] Answer the following question: {prompt} [/INST]\nAnswer: "
print('No retriever question prompt:')
print(prompt)
case _:
prompt = f"[INST] {prompt} [/INST]"
print('Other question prompt:')
print(prompt)
return prompt, md
def generate_batch(*prompts):
tokenized_inputs = tokenizer(prompts, return_tensors="pt", padding=True).to("cuda")
with torch.no_grad():
responses = tokenizer.batch_decode(
model.generate(
**tokenized_inputs,
max_new_tokens=256,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
stopping_criteria=StoppingCriteriaList([eval_stop_criterion]),
),
skip_special_tokens=True,
)
decoded_prompts = tokenizer.batch_decode(tokenized_inputs.input_ids, skip_special_tokens=True)
return [(prompt, answer) for prompt, answer in zip(decoded_prompts, responses)]
def cleanup(prompt, answer):
start = answer.index(start_template) + len(start_template) if start_template in answer else len(prompt)
start = answer.index(command_template) + len(command_template) if command_template in answer else start
end = answer.index(end_template) if end_template in answer else len(answer)
return (prompt, answer[start:end].strip())
modes = ["Kubectl command", "Kubernetes related", "Other"]
print(f'{" Query Start ":-^40}')
print("Classified as: " + modes[response_num])
modes[response_num] = f"**{modes[response_num]}**"
modes = " / ".join(modes)
if response_num == 2:
prompt, md = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Prompt given to the model:\n"
f"{str_to_md(prompt)}\n"
f"# Model's answer:\n" f"{str_to_md(response)}\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer:\n" f"{str_to_md(response)}"
)
if response_num == 0:
prompt, md = create_generation_prompt(response_num, prompt, False)
original, new = generate_batch(prompt)[0]
prompt, response = cleanup(original, new)
model_response = new[len(original):].strip()
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Prompt given to the model:\n"
f"{str_to_md(prompt)}\n"
f"# Model's answer:\n"
f"{str_to_md(model_response)}\n"
f"# Processed answer:\n"
f"```bash\n{str_to_md(response)}\n```\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer:\n" f"```bash\n{str_to_md(response)}\n```\n"
)
res_prompt, res_md = create_generation_prompt(response_num, prompt, False)
res_semantic_search_prompt, res_semantic_search_md = create_generation_prompt(response_num, prompt, "semantic_search")
res_google_search_prompt, res_google_search_md = create_generation_prompt(response_num, prompt, "google_search")
gen_normal, gen_semantic_search, gen_google_search = generate_batch(
res_prompt, res_semantic_search_prompt, res_google_search_prompt
)
print("SEMANTIC BEFORE CLEANUP: ", gen_semantic_search)
print("GOOGLE BEFORE CLEANUP: ", gen_google_search)
res_prompt, res_normal = cleanup(*gen_normal)
res_semantic_search_prompt, res_semantic_search = cleanup(*gen_semantic_search)
res_google_search_prompt, res_google_search = cleanup(*gen_google_search)
print("SEMANTIC AFTER CLEANUP: ", res_semantic_search)
print("GOOGLE AFTER CLEANUP: ", res_google_search)
if verbose:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"--------------------------------------------\n"
f"# Answer with finetuned model\n"
f"## Prompt given to the model:\n"
f"{str_to_md(res_prompt)}\n\n"
f"## Model's answer:\n"
f"{str_to_md(res_normal)}\n\n"
f"--------------------------------------------\n"
f"# Answer with RAG\n"
f"## Section 1: Preparing for generation \n\n{res_semantic_search_md} \n\n"
f"## Section 2: Generating answer \n\n{str_to_md(res_semantic_search.strip())} \n\n"
f"--------------------------------------------\n"
f"# Answer with Google search\n"
f"## Section 1: Preparing for generation \n\n{res_google_search_md} \n\n"
f"## Section 2: Generating answer \n\n{str_to_md(res_google_search.strip())} \n\n"
)
else:
return (
f"# 📚KubeWizard📚\n"
f"#### A helpful Kubernetes Assistant powered by Component Soft\n"
f"--------------------------------------------\n"
f"# Classified your prompt as:\n"
f"{modes}\n\n"
f"# Answer with finetuned model \n\n{str_to_md(res_normal)} \n\n"
f"# Answer with RAG \n\n{str_to_md(res_semantic_search.strip())} \n\n"
f"# Answer with Google search \n\n{str_to_md(res_google_search)} \n\n"
)
iface = gr.Interface(
fn=text_to_text_generation,
inputs=[
gr.components.Checkbox(label="Verbose"),
gr.components.Text(placeholder="prompt here ...", label="Prompt"),
],
outputs=gr.components.Markdown(label="Answer"),
allow_flagging="never",
title="📚KubeWizard📚",
)
iface.launch()
|