Spaces:
Runtime error
Runtime error
File size: 7,054 Bytes
3ec9224 6b7ae1b aad7110 ccd769b 9278ac3 6b7ae1b 9278ac3 6b7ae1b 9278ac3 aad7110 f08873e ccd769b 7e34d60 6b7ae1b aad7110 2073925 aad7110 6b7ae1b aad7110 6b7ae1b aad7110 6b7ae1b aad7110 6b7ae1b aad7110 71bcd22 aad7110 71bcd22 aad7110 9278ac3 aad7110 2073925 aad7110 55cb274 aad7110 55cb274 aad7110 b9d9831 55cb274 aad7110 55cb274 aad7110 71bcd22 aad7110 71bcd22 aad7110 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import torch
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFacePipeline
from langchain.memory import ConversationBufferMemory
from transformers import AutoTokenizer, pipeline
# ===================================================================
# CONFIGURAÇÃO RADICAL DE HARDWARE
# ===================================================================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
TORCH_DTYPE = torch.bfloat16 if DEVICE == "cuda" else torch.float32
MAX_MEMORY = "16GB" if DEVICE == "cpu" else None
# ===================================================================
# LISTA DE MODELOS OTIMIZADOS
# ===================================================================
LLM_MODELS = {
"TinyLlama-1.1B-Chat": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Phi-2": "microsoft/phi-2",
"Mistral-7B-Instruct": "mistralai/Mistral-7B-Instruct-v0.2",
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta"
}
# ===================================================================
# NÚCLEO DO SISTEMA
# ===================================================================
class DocumentProcessor:
@staticmethod
def load_and_split(files, chunk_size=512, chunk_overlap=64):
"""Carrega e processa documentos com paralelismo extremo"""
try:
loaders = [PyPDFLoader(file.name) for file in files]
return [page for loader in loaders for page in loader.load_and_split(
RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n\n", "\n", " ", ""]
)
)]
except Exception as e:
raise RuntimeError(f"FALHA CRÍTICA NO PROCESSAMENTO: {str(e)}")
class VectorDBManager:
@staticmethod
def create(splits):
"""Cria vetorização com aceleração de hardware"""
return Chroma.from_documents(
documents=splits,
embedding=HuggingFaceEmbeddings(),
persist_directory="./chroma_db"
)
class LLMEngine:
@staticmethod
def initialize(model_name, temp=0.7, max_tokens=512):
"""Inicialização agressiva do modelo com otimizações de baixo nível"""
try:
tokenizer = AutoTokenizer.from_pretrained(LLM_MODELS[model_name])
pipe = pipeline(
"text-generation",
model=LLM_MODELS[model_name],
tokenizer=tokenizer,
device=DEVICE,
torch_dtype=TORCH_DTYPE,
max_new_tokens=max_tokens,
do_sample=True,
top_k=50,
temperature=temp,
model_kwargs={"load_in_4bit": True} if "cuda" in DEVICE else {}
)
return HuggingFacePipeline(pipeline=pipe)
except KeyError:
raise ValueError("MODELO NÃO SUPORTADO!")
except Exception as e:
raise RuntimeError(f"FALHA NUCLEAR NO MODELO: {str(e)}")
# ===================================================================
# INTERFACE DE COMBATE
# ===================================================================
def create_war_interface():
with gr.Blocks(theme=gr.themes.Soft(), title="⚔️ PDF Assault v1.0") as warzone:
state = gr.State({"db": None, "llm": None})
# Zona de Upload
with gr.Row(variant="panel"):
file_upload = gr.Files(label="DOCUMENTOS ALVO", file_types=[".pdf"])
process_btn = gr.Button("ATAQUE!", variant="stop")
# Controles Táticos
with gr.Row(variant="compact"):
model_selector = gr.Dropdown(list(LLM_MODELS.keys()), label="ARMA PRINCIPAL", value="TinyLlama-1.1B-Chat")
temp_slider = gr.Slider(0, 1, 0.7, label="POTÊNCIA DE FOGO")
deploy_btn = gr.Button("DEPLOY MODELO", variant="primary")
# Campo de Batalha
chatbot = gr.Chatbot(height=600, label="ZONA DE OPERAÇÕES")
msg_input = gr.Textbox(label="COMANDO DE ATAQUE", placeholder="Insira o alvo...")
# Sistema de Logs
combat_log = gr.Textbox(label="RELATÓRIO DE COMBATE", interactive=False)
# ===== Operações Militares =====
@process_btn.click(inputs=[file_upload], outputs=[state, combat_log])
def assault_documents(files):
try:
splits = DocumentProcessor.load_and_split(files)
db = VectorDBManager.create(splits)
return {"db": db, "llm": None}, "✅ DOCUMENTOS CAPTURADOS!"
except Exception as e:
return state.value, f"☠️ FALHA CATACLÍSMICA: {str(e)}"
@deploy_btn.click(inputs=[model_selector, temp_slider, state], outputs=[state, combat_log])
def deploy_model(model, temp, current_state):
try:
llm = LLMEngine.initialize(model, temp)
current_state["llm"] = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=current_state["db"].as_retriever(),
memory=ConversationBufferMemory(memory_key="chat_history", return_messages=True),
return_source_documents=True
)
return current_state, f"🚀 {model} PRONTO PARA COMBATE!"
except Exception as e:
return current_state, f"💥 FALHA NO DEPLOY: {str(e)}"
@msg_input.submit(inputs=[msg_input, chatbot, state], outputs=[msg_input, chatbot])
def execute_combat(command, history, state):
if not state["llm"]:
return command, history + [(command, "⚠️ MODELO NÃO DEPLOYADO!")]
try:
result = state["llm"]({"question": command, "chat_history": history})
response = f"🎯 RESPOSTA:\n{result['answer']}\n\n"
response += "📌 INTEL:\n" + "\n".join(
f"Página {doc.metadata['page']+1}: {doc.page_content[:75]}..."
for doc in result["source_documents"][:3]
)
return "", history + [(command, response)]
except Exception as e:
return command, history + [(command, f"☢️ FALHA CRÍTICA: {str(e)}")]
return warzone
# ===================================================================
# INICIALIZAÇÃO DO SISTEMA
# ===================================================================
if __name__ == "__main__":
interface = create_war_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
auth=("admin", "combat123"),
show_error=True
) |