File size: 19,691 Bytes
8b87358
 
 
 
 
 
 
 
f3725a9
678ff71
81d7def
c9e5868
7bde2e9
c9e5868
3c27777
 
 
c9e5868
8b87358
21b74d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b87358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979a7b6
8b87358
 
bbd78ec
8b87358
 
 
 
bbd78ec
8b87358
 
 
bbd78ec
8b87358
 
 
 
 
 
 
 
81d7def
82c1429
 
866dbcd
c9e5868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255c7b
d226f49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46c623
f3a7e83
a46c623
f3a7e83
 
 
a46c623
 
bed9a70
a46c623
bed9a70
f3a7e83
a312d58
bed9a70
f3a7e83
bed9a70
 
 
 
 
f3a7e83
 
7bde2e9
 
 
 
 
 
 
 
 
 
 
 
 
dd99f2c
 
 
 
 
 
 
 
 
 
 
7bde2e9
f3725a9
 
 
 
 
 
 
 
 
 
 
 
 
 
dd99f2c
7bde2e9
45d344c
4f1e4cb
c9e5868
8b87358
2255c7b
 
 
7bde2e9
 
a312d58
7bde2e9
 
f3a7e83
 
 
a312d58
 
 
 
 
a46c623
4368b39
a312d58
 
 
4368b39
a312d58
 
 
 
 
 
7bde2e9
c9e5868
 
d226f49
083c145
f3725a9
083c145
a46c623
7bde2e9
083c145
 
f3725a9
083c145
 
 
 
a46c623
083c145
bed9a70
a46c623
a312d58
bed9a70
 
 
 
083c145
a46c623
083c145
a46c623
77ca8c8
 
a312d58
8e11118
7921180
4f1e4cb
c9e5868
55414fe
a46c623
55414fe
 
 
a312d58
73cee42
a312d58
 
 
 
 
73cee42
 
a312d58
 
73cee42
 
4f1e4cb
 
083c145
4f1e4cb
73cee42
 
4f1e4cb
 
 
73cee42
083c145
73cee42
 
 
 
 
 
 
 
 
20887f3
a312d58
8b87358
 
 
46f61fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio


# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt')  # 使用 YOLOv8 預訓練模型


dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", 
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", 
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", 
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", 
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", 
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", 
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", 
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", 
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", 
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", 
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", 
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", 
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", 
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", 
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", 
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", 
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", 
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", 
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", 
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", 
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", 
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", 
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", 
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", 
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", 
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link():
    return "https://www.akc.org/dog-breeds/"

# def predict(image):
#     if image is None:
#         return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
#     try:
#         image_tensor = preprocess_image(image)
#         with torch.no_grad():
#             output = model(image_tensor)
#             logits = output[0] if isinstance(output, tuple) else output

#             probabilities = F.softmax(logits, dim=1)
#             topk_probs, topk_indices = torch.topk(probabilities, k=3)

#             top1_prob = topk_probs[0][0].item()
#             topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
#             topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]

#             if top1_prob >= 0.5:
#                 breed = topk_breeds[0]
#                 description = get_dog_description(breed)
#                 return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#             elif top1_prob < 0.2:
#                 return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
#                         gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
#             else:
#                 explanation = (
#                     f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
#                     f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
#                     f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
#                     f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
#                     "Click on a button to view more information about the breed."
#                 )
#                 return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")

#     except Exception as e:
#         return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


# def format_description(description, breed):
#     if isinstance(description, dict):
#         formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
#     else:
#         formatted_description = description

#     akc_link = get_akc_breeds_link()
#     formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

#     disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
#                   "You may need to search for the specific breed on that page. "
#                   "I am not responsible for the content on external sites. "
#                   "Please refer to the AKC's terms of use and privacy policy.*")
#     formatted_description += disclaimer

#     return formatted_description

# def show_details(breed):
#     breed_name = breed.split("More about ")[-1]
#     description = get_dog_description(breed_name)
#     return format_description(description, breed_name)

# with gr.Blocks(css="""
#     .container {
#         max-width: 900px;
#         margin: 0 auto;
#         padding: 20px;
#         background-color: rgba(255, 255, 255, 0.9);
#         border-radius: 15px;
#         box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
#     }
#     .gr-form { display: flex; flex-direction: column; align-items: center; }
#     .gr-box { width: 100%; max-width: 500px; }
#     .output-markdown, .output-image {
#         margin-top: 20px;
#         padding: 15px;
#         background-color: #f5f5f5;
#         border-radius: 10px;
#     }
#     .examples {
#         display: flex;
#         justify-content: center;
#         flex-wrap: wrap;
#         gap: 10px;
#         margin-top: 20px;
#     }
#     .examples img {
#         width: 100px;
#         height: 100px;
#         object-fit: cover;
#     }
#     """) as iface:

#     gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
#     gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
#     with gr.Row():
#         input_image = gr.Image(label="Upload a dog image", type="numpy")
#         output = gr.Markdown(label="Prediction Results")
    
#     with gr.Row():
#         btn1 = gr.Button("View More 1", visible=False)
#         btn2 = gr.Button("View More 2", visible=False)
#         btn3 = gr.Button("View More 3", visible=False)

#     input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
    
#     btn1.click(show_details, inputs=btn1, outputs=output)
#     btn2.click(show_details, inputs=btn2, outputs=output)
#     btn3.click(show_details, inputs=btn3, outputs=output)

#     gr.Examples(
#         examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
#         inputs=input_image
#     )

#     gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')

# # launch the program
# if __name__ == "__main__":
#     iface.launch()

def format_description(description, breed, is_multi_dog=False, dog_number=None):
    if isinstance(description, dict):
        formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items() if key != "Breed"])
    else:
        formatted_description = description

    header = f"**Dog {dog_number}: {breed}**\n\n" if is_multi_dog else f"**Breed: {breed}**\n\n"
    
    formatted_description = f"""
{header}
{formatted_description}

**Want to learn more about dog breeds?**
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.

*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. 
You may need to search for the specific breed on that page. 
I am not responsible for the content on external sites. 
Please refer to the AKC's terms of use and privacy policy.*
"""
    return formatted_description

# 全局變量,用於存儲加載的模型
model = None
model_yolo = None

def load_models():
    global model, model_yolo
    model = # 加載您的品種分類模型
    model_yolo = YOLO('yolov8n.pt')

# 在應用啟動時加載模型
load_models()

async def predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
        topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
    return top1_prob, topk_breeds, topk_probs_percent

async def detect_multiple_dogs(image):
    try:
        results = model_yolo(image)
        dogs = []
        for result in results:
            for box in result.boxes:
                if box.cls == 16:  # COCO dataset class for dog is 16
                    xyxy = box.xyxy[0].tolist()
                    confidence = box.conf.item()
                    cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
                    dogs.append((cropped_image, confidence, xyxy))
        return dogs
    except Exception as e:
        print(f"Error in detect_multiple_dogs: {e}")
        return []

async def predict(image):
    if image is None:
        return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        # 快速檢查是否有多個狗
        dogs = await detect_multiple_dogs(image)
        
        if len(dogs) <= 1:  # 單狗或無狗情況
            top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
            breed = topk_breeds[0]
            description = get_dog_description(breed)
            formatted_description = format_description(description, breed)
            
            if top1_prob >= 0.5:
                return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
            elif 0.2 <= top1_prob < 0.5:
                explanation = f"""
**Detected with moderate confidence. Here are the top 3 possible breeds:**

1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})

Click on a button below to view more information about each breed.
"""
                return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
            else:
                return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        
        # 多狗情況
        explanations = []
        visible_buttons = []
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)
        font = ImageFont.load_default()

        for i, (cropped_image, _, box) in enumerate(dogs, 1):
            top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)

            draw.rectangle(box, outline="red", width=3)
            draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=font)

            if top1_prob >= 0.5:
                breed = topk_breeds[0]
                description = get_dog_description(breed)
                explanations.append(format_description(description, breed, is_multi_dog=True, dog_number=i))
            elif 0.2 <= top1_prob < 0.5:
                explanation = f"""
**Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:**

1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
"""
                explanations.append(explanation)
                visible_buttons.extend([f"More about Dog {i}: {topk_breeds[0]}", f"More about Dog {i}: {topk_breeds[1]}", f"More about Dog {i}: {topk_breeds[2]}"])
            else:
                explanations.append(f"**Dog {i}**: The image is unclear or the breed is not in the dataset.")

        final_explanation = "\n\n".join(explanations)
        return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=True, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=True, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")

    except Exception as e:
        return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

def show_details(breed):
    breed_name = breed.split("More about ")[-1].split(": ")[-1]  # Handle both single and multi-dog cases
    description = get_dog_description(breed_name)
    return format_description(description, breed_name)

# Gradio interface setup
with gr.Blocks(css="""
    .container { max-width: 900px; margin: auto; padding: 20px; }
    .gr-box { border-radius: 15px; }
    .output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
    .examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
    .examples img { width: 100px; height: 100px; object-fit: cover; }
    """) as iface:

    gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
    gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
    with gr.Row():
        input_image = gr.Image(label="Upload a dog image", type="pil")
        output_image = gr.Image(label="Annotated Image")
    
    output = gr.Markdown(label="Prediction Results")
    
    with gr.Row():
        btn1 = gr.Button("View More 1", visible=False)
        btn2 = gr.Button("View More 2", visible=False)
        btn3 = gr.Button("View More 3", visible=False)

    input_image.change(predict, inputs=input_image, outputs=[output, output_image, btn1, btn2, btn3])
    
    btn1.click(show_details, inputs=btn1, outputs=output)
    btn2.click(show_details, inputs=btn2, outputs=output)
    btn3.click(show_details, inputs=btn3, outputs=output)

    gr.Examples(
        examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
        inputs=input_image
    )

    gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed_Classifier">Dog Breed Classifier</a>')

if __name__ == "__main__":
    iface.launch()