Deadmon's picture
Create app.py
85330fa verified
raw
history blame
8.07 kB
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from transformers import AutoFeatureExtractor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus
from huggingface_hub import hf_hub_download, snapshot_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
import gradio as gr
import cv2
import os
# Model paths
model_paths = {
"Realistic Vision V4.0": "SG161222/Realistic_Vision_V4.0_noVAE",
"Pony Realism v21": snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl"),
"Cyber Realistic Pony v61": snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl"),
"Stallion Dreams Pony Realistic v1": snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")
}
vae_model_path = "stabilityai/sd-vae-ft-mse"
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model")
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model")
# Safety Checker Setup
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
device = "cuda"
# Define the scheduler
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
# Face analysis setup
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
cv2.setNumThreads(1)
# Function to load the appropriate pipeline based on user selection
def load_model(model_choice):
model_path = model_paths[model_choice]
pipeline = StableDiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=safety_feature_extractor,
safety_checker=None
).to(device)
# Load the IP Adapter models
ip_model = IPAdapterFaceID(pipeline, ip_ckpt, device)
ip_model_plus = IPAdapterFaceIDPlus(pipeline, image_encoder_path, ip_plus_ckpt, device)
return pipeline, ip_model, ip_model_plus
# Gradio function to generate images
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, model_choice, progress=gr.Progress(track_tqdm=True)):
pipeline, ip_model, ip_model_plus = load_model(model_choice)
faceid_all_embeds = []
first_iteration = True
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
if first_iteration and preserve_face_structure:
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224)
first_iteration = False
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}"
if not preserve_face_structure:
image = ip_model.generate(
prompt=prompt,
negative_prompt=total_negative_prompt,
faceid_embeds=average_embedding,
scale=likeness_strength,
width=512,
height=512,
num_inference_steps=30
)
else:
image = ip_model_plus.generate(
prompt=prompt,
negative_prompt=total_negative_prompt,
faceid_embeds=average_embedding,
scale=likeness_strength,
face_image=face_image,
shortcut=True,
s_scale=face_strength,
width=512,
height=512,
num_inference_steps=30
)
return image
def change_style(style):
if style == "Photorealistic":
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0)
else:
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8)
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
css = '''
h1{margin-bottom: 0 !important}
footer{display:none !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("")
gr.Markdown("")
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
prompt = gr.Textbox(
label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a [man/woman/person]..."
)
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality")
style = gr.Radio(
label="Generation type",
info="For stylized try prompts like 'a watercolor painting of a woman'",
choices=["Photorealistic", "Stylized"],
value="Photorealistic"
)
model_choice = gr.Dropdown(
label="Model Choice",
choices=list(model_paths.keys()),
value="Realistic Vision V4.0"
)
submit = gr.Button("Submit")
with gr.Accordion(open=False, label="Advanced Options"):
preserve = gr.Checkbox(
label="Preserve Face Structure",
info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.",
value=True
)
face_strength = gr.Slider(
label="Face Structure strength",
info="Only applied if preserve face structure is checked",
value=1.3,
step=0.1,
minimum=0,
maximum=3
)
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5)
nfaa_negative_prompts = gr.Textbox(
label="Appended Negative Prompts",
info="Negative prompts to steer generations towards safe for all audiences outputs",
value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through"
)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
style.change(fn=change_style,
inputs=style,
outputs=[preserve, face_strength, likeness_strength])
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(
fn=generate_image,
inputs=[files, prompt, negative_prompt, preserve, face_strength, likeness_strength, nfaa_negative_prompts, model_choice],
outputs=gallery
)
gr.Markdown("")
demo.launch()