Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from transformers import AutoFeatureExtractor | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID, IPAdapterFaceIDPlus | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from insightface.app import FaceAnalysis | |
from insightface.utils import face_align | |
import gradio as gr | |
import cv2 | |
import os | |
# Model paths | |
model_paths = { | |
"Realistic Vision V4.0": "SG161222/Realistic_Vision_V4.0_noVAE", | |
"Pony Realism v21": snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl"), | |
"Cyber Realistic Pony v61": snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl"), | |
"Stallion Dreams Pony Realistic v1": snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl") | |
} | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
ip_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sd15.bin", repo_type="model") | |
ip_plus_ckpt = hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid-plusv2_sd15.bin", repo_type="model") | |
# Safety Checker Setup | |
safety_model_id = "CompVis/stable-diffusion-safety-checker" | |
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) | |
device = "cuda" | |
# Define the scheduler | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16) | |
# Face analysis setup | |
app = FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
cv2.setNumThreads(1) | |
# Function to load the appropriate pipeline based on user selection | |
def load_model(model_choice): | |
model_path = model_paths[model_choice] | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch.float16, | |
scheduler=noise_scheduler, | |
vae=vae, | |
feature_extractor=safety_feature_extractor, | |
safety_checker=None | |
).to(device) | |
# Load the IP Adapter models | |
ip_model = IPAdapterFaceID(pipeline, ip_ckpt, device) | |
ip_model_plus = IPAdapterFaceIDPlus(pipeline, image_encoder_path, ip_plus_ckpt, device) | |
return pipeline, ip_model, ip_model_plus | |
# Gradio function to generate images | |
def generate_image(images, prompt, negative_prompt, preserve_face_structure, face_strength, likeness_strength, nfaa_negative_prompt, model_choice, progress=gr.Progress(track_tqdm=True)): | |
pipeline, ip_model, ip_model_plus = load_model(model_choice) | |
faceid_all_embeds = [] | |
first_iteration = True | |
for image in images: | |
face = cv2.imread(image) | |
faces = app.get(face) | |
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
faceid_all_embeds.append(faceid_embed) | |
if first_iteration and preserve_face_structure: | |
face_image = face_align.norm_crop(face, landmark=faces[0].kps, image_size=224) | |
first_iteration = False | |
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0) | |
total_negative_prompt = f"{negative_prompt} {nfaa_negative_prompt}" | |
if not preserve_face_structure: | |
image = ip_model.generate( | |
prompt=prompt, | |
negative_prompt=total_negative_prompt, | |
faceid_embeds=average_embedding, | |
scale=likeness_strength, | |
width=512, | |
height=512, | |
num_inference_steps=30 | |
) | |
else: | |
image = ip_model_plus.generate( | |
prompt=prompt, | |
negative_prompt=total_negative_prompt, | |
faceid_embeds=average_embedding, | |
scale=likeness_strength, | |
face_image=face_image, | |
shortcut=True, | |
s_scale=face_strength, | |
width=512, | |
height=512, | |
num_inference_steps=30 | |
) | |
return image | |
def change_style(style): | |
if style == "Photorealistic": | |
return gr.update(value=True), gr.update(value=1.3), gr.update(value=1.0) | |
else: | |
return gr.update(value=True), gr.update(value=0.1), gr.update(value=0.8) | |
def swap_to_gallery(images): | |
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False) | |
def remove_back_to_files(): | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
css = ''' | |
h1{margin-bottom: 0 !important} | |
footer{display:none !important} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("") | |
gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(): | |
files = gr.Files( | |
label="Drag 1 or more photos of your face", | |
file_types=["image"] | |
) | |
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=125) | |
with gr.Column(visible=False) as clear_button: | |
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm") | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Try something like 'a photo of a man/woman/person'", | |
placeholder="A photo of a [man/woman/person]..." | |
) | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality") | |
style = gr.Radio( | |
label="Generation type", | |
info="For stylized try prompts like 'a watercolor painting of a woman'", | |
choices=["Photorealistic", "Stylized"], | |
value="Photorealistic" | |
) | |
model_choice = gr.Dropdown( | |
label="Model Choice", | |
choices=list(model_paths.keys()), | |
value="Realistic Vision V4.0" | |
) | |
submit = gr.Button("Submit") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
preserve = gr.Checkbox( | |
label="Preserve Face Structure", | |
info="Higher quality, less versatility (the face structure of your first photo will be preserved). Unchecking this will use the v1 model.", | |
value=True | |
) | |
face_strength = gr.Slider( | |
label="Face Structure strength", | |
info="Only applied if preserve face structure is checked", | |
value=1.3, | |
step=0.1, | |
minimum=0, | |
maximum=3 | |
) | |
likeness_strength = gr.Slider(label="Face Embed strength", value=1.0, step=0.1, minimum=0, maximum=5) | |
nfaa_negative_prompts = gr.Textbox( | |
label="Appended Negative Prompts", | |
info="Negative prompts to steer generations towards safe for all audiences outputs", | |
value="naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through" | |
) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated Images") | |
style.change(fn=change_style, | |
inputs=style, | |
outputs=[preserve, face_strength, likeness_strength]) | |
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]) | |
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]) | |
submit.click( | |
fn=generate_image, | |
inputs=[files, prompt, negative_prompt, preserve, face_strength, likeness_strength, nfaa_negative_prompts, model_choice], | |
outputs=gallery | |
) | |
gr.Markdown("") | |
demo.launch() | |