Spaces:
Build error
Build error
File size: 9,585 Bytes
7d1b388 b219f09 7d1b388 4e75a1b 7d1b388 4b77ec3 7d1b388 0107ad0 7d1b388 4b77ec3 7d1b388 0107ad0 8fd8732 0107ad0 7d1b388 0107ad0 7d1b388 4b77ec3 7d1b388 bcd193d 0107ad0 bcd193d 52cbc64 4f63778 52cbc64 0107ad0 4f63778 e18a4a7 52cbc64 0107ad0 4f63778 52cbc64 4f63778 52cbc64 4f63778 52cbc64 4f63778 1a9f873 0107ad0 1a9f873 7d1b388 1a9f873 0107ad0 1a9f873 7d1b388 1a9f873 7d1b388 f369728 7d1b388 f369728 7d1b388 bcd193d 7d6d2a6 0107ad0 bcd193d b219f09 0107ad0 3994894 1a9f873 0107ad0 f888310 7d1b388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import numpy as np
import onnxruntime
import onnx
import gradio as gr
import requests
import json
from extractnet import Extractor
import math
from transformers import AutoTokenizer
import spacy
import os
from transformers import pipeline
import itertools
import pandas as pd
OUT_HEADERS = ['E','S','G']
MODEL_TRANSFORMER_BASED = "distilbert-base-uncased"
MODEL_ONNX_FNAME = "ESG_classifier_batch.onnx"
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
#MODEL_SUMMARY_PEGASUS = "oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6"
#API_HF_SENTIMENT_URL = "https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-sentiment"
def _inference_ner_spancat(text, summary, penalty=0.5, normalise=True, limit_outputs=10):
nlp = spacy.load("en_pipeline")
doc = nlp(text)
spans = doc.spans["sc"]
comp_raw_text = dict( sorted( dict(zip([str(x) for x in spans],[float(x)*penalty for x in spans.attrs['scores']])).items(), key=lambda x: x[1], reverse=True) )
doc = nlp(summary)
spans = doc.spans["sc"]
exceeds_one = 0.0
for comp_s in spans:
if str(comp_s) in comp_raw_text.keys():
comp_raw_text[str(comp_s)] = comp_raw_text[str(comp_s)] / penalty
temp_max = comp_raw_text[str(comp_s)]if comp_raw_text[str(comp_s)] > 1.0 else 0.0
exceeds_one = comp_raw_text[str(comp_s)] if temp_max > exceeds_one else exceeds_one
#This "exceeds_one" is a bit confusing. So the thing is that the penalty is reverted for each time the company appears in the summary and hence the value can exceed one when the company appears more than once. The normalisation means that all the other scores are divided by the maximum when any value exceeds one
if normalise and (exceeds_one > 1):
comp_raw_text = {k: v/exceeds_one for k, v in comp_raw_text.items()}
return dict(itertools.islice(sorted(comp_raw_text.items(), key=lambda x: x[1], reverse=True), limit_outputs))
#def _inference_summary_model_pipeline(text):
# pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS)
# return pipe(text,truncation='longest_first')
def _inference_sentiment_model_pipeline(text):
tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'}
pipe = pipeline("sentiment-analysis", model=MODEL_SENTIMENT_ANALYSIS )
return pipe(text,**tokenizer_kwargs)
#def _inference_sentiment_model_via_api_query(payload):
# response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload)
# return response.json()
def _lematise_text(text):
nlp = spacy.load("en_core_web_sm", disable=['ner'])
text_out = []
for doc in nlp.pipe(text): #see https://spacy.io/models#design
new_text = ""
for token in doc:
if (not token.is_punct
and not token.is_stop
and not token.like_url
and not token.is_space
and not token.like_email
#and not token.like_num
and not token.pos_ == "CONJ"):
new_text = new_text + " " + token.lemma_
text_out.append( new_text )
return text_out
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def is_in_archive(url):
try:
r = requests.get('http://archive.org/wayback/available?url='+url)
archive = json.loads(r.text)
if archive['archived_snapshots'] :
archive['archived_snapshots']['closest']
return {'archived':archive['archived_snapshots']['closest']['available'], 'url':archive['archived_snapshots']['closest']['url'],'error':0}
else:
return {'archived':False, 'url':"", 'error':0}
except:
print(f"[E] Quering URL ({url}) from archive.org")
return {'archived':False, 'url':"", 'error':-1}
#def _inference_ner(text):
# return labels
def _inference_classifier(text):
tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED)
inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only!
ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME)
onnx_model = onnx.load(MODEL_ONNX_FNAME)
onnx.checker.check_model(onnx_model)
# compute ONNX Runtime output prediction
ort_outs = ort_session.run(None, input_feed=dict(inputs))
return sigmoid(ort_outs[0])
def inference(input_batch,isurl,use_archive,limit_companies=10):
input_batch_content = []
# if file_in.name is not "":
# print("[i] Input is file:",file_in.name)
# dft = pd.read_csv(
# file_in.name,
# compression=dict(method='zip')
# )
# assert file_col_name in dft.columns, "Indicated col_name not found in file"
# input_batch_r = dft[file_col_name].values.tolist()
# else:
print("[i] Input is list")
assert len(input_batch) > 0, "input_batch array is empty"
input_batch_r = input_batch
print("[i] Input size:",len(input_batch_r))
if isurl:
print("[i] Data is URL")
if use_archive:
print("[i] Use chached URL from archive.org")
for row_in in input_batch_r:
if isinstance(row_in , list):
url = row_in[0]
else:
url = row_in
if use_archive:
archive = is_in_archive(url)
if archive['archived']:
url = archive['url']
#Extract the data from url
extracted = Extractor().extract(requests.get(url).text)
input_batch_content.append(extracted['content'])
else:
print("[i] Data is news contents")
if isinstance(input_batch_r[0], list):
print("[i] Data is list of lists format")
for row_in in input_batch_r:
input_batch_content.append(row_in[0])
else:
print("[i] Data is single list format")
input_batch_content = input_batch_r
print("[i] Batch size:",len(input_batch_content))
print("[i] Running ESG classifier inference...")
prob_outs = _inference_classifier(input_batch_content)
print("[i] Running sentiment using",MODEL_SENTIMENT_ANALYSIS ,"inference...")
#sentiment = _inference_sentiment_model_via_api_query({"inputs": extracted['content']})
sentiment = _inference_sentiment_model_pipeline(input_batch_content )[0]
#summary = _inference_summary_model_pipeline(input_batch_content )[0]['generated_text']
#ner_labels = _inference_ner_spancat(input_batch_content ,summary, penalty = 0.8, limit_outputs=limit_companies)
df = pd.DataFrame(prob_outs,columns =['E','S','G'])
df['sent_lbl'] = sentiment['label']
df['sent_score'] = sentiment['score']
return df #ner_labels, {'E':float(prob_outs[0]),"S":float(prob_outs[1]),"G":float(prob_outs[2])},{sentiment['label']:float(sentiment['score'])},"**Summary:**\n\n" + summary
title = "ESG API Demo"
description = """This is a demonstration of the full ESG pipeline backend where given a list of URL (english, news) the news contents are extracted, using extractnet, and fed to three models:
- An off-the-shelf sentiment classification model (ProsusAI/finbert)
- A custom NER for the company extraction
- A custom ESG classifier for the ESG labeling of the news (the extracted text is also lemmatised prior to be fed to this classifier)
API input parameters:
- List: list of text. Either list of Url of the news (english) or list of extracted news contents
- 'Data type': int. 0=list is of extracted news contents, 1=list is of urls.
- `use_archive`: boolean. The model will extract the archived version in archive.org of the url indicated. This is useful with old news and to bypass news behind paywall
- `limit_companies`: integer. Number of found relevant companies to report.
"""
examples = [[ [['https://www.bbc.com/news/uk-62732447'],
['https://www.bbc.com/news/business-62747401'],
['https://www.bbc.com/news/technology-62744858'],
['https://www.bbc.com/news/science-environment-62758811'],
['https://www.theguardian.com/business/2022/sep/02/nord-stream-1-gazprom-announces-indefinite-shutdown-of-pipeline'],
['https://www.bbc.com/news/world-europe-62766867'],
['https://www.bbc.com/news/business-62524031'],
['https://www.bbc.com/news/business-62728621'],
['https://www.bbc.com/news/science-environment-62680423']],'url',False,5]]
demo = gr.Interface(fn=inference,
inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True),
gr.Dropdown(label='data type', choices=['text','url'], type='index', value='url'),
gr.Checkbox(label='if url parse cached in archive.org'),
gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output', value=5)],
outputs=[gr.Dataframe(label='output raw', col_count=1, type='pandas', wrap=True, header=OUT_HEADERS)],
#gr.Label(label='Company'),
#gr.Label(label='ESG'),
#gr.Label(label='Sentiment'),
#gr.Markdown()],
title=title,
description=description,
examples=examples)
demo.launch()
|