Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline | |
from PIL import Image | |
import random | |
import numpy as np | |
import torch | |
import os | |
import json | |
from datetime import datetime | |
from pipeline_rf_inversionfree_edit import RectifiedFlowPipeline as RectifiedFlowEditPipeline | |
pipe_edit = RectifiedFlowEditPipeline.from_pretrained("XCLIU/2_rectified_flow_from_sd_1_5", torch_dtype=torch.float32) | |
pipe_edit.to("cuda") | |
# Function to process the image | |
def process_image( | |
image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, | |
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input | |
): | |
image_with_mask = { | |
"image": image_layers["background"], | |
"mask": image_layers["layers"][0] if mask_input is None else mask_input | |
} | |
# Set seed | |
if randomize_seed or seed is None: | |
seed = random.randint(0, 2**32 - 1) | |
generator = torch.Generator("cuda").manual_seed(int(seed)) | |
# Unpack image and mask | |
if image_with_mask is None: | |
return None, f"β Please upload an image and create a mask." | |
image = image_with_mask["image"] | |
mask = image_with_mask["mask"] | |
if image is None or mask is None: | |
return None, f"β Please ensure both image and mask are provided." | |
# Convert images to RGB | |
image = image.convert("RGB") | |
mask = mask.split()[-1] # Convert mask to grayscale | |
if not edit_prompt: | |
return None, f"β Please provide a prompt for editing." | |
if not prompt: | |
prompt = "" | |
# Resize the mask to match the image | |
# mask = mask.resize(image.size) | |
with torch.autocast("cuda"): | |
# Placeholder for using advanced parameters in the future | |
# Adjust parameters according to advanced settings if applicable | |
result = pipe_edit( | |
prompt=prompt, | |
edit_prompt=edit_prompt, | |
input_image=image.resize((512, 512)), | |
mask_image=mask.resize((512, 512)), | |
negative_prompt="", | |
num_inference_steps=num_inference_steps, | |
guidance_scale=true_cfg, | |
generator=generator, | |
# save_masked_image=False, | |
# output_path="", | |
learning_rate=learning_rate, | |
max_steps=max_steps, | |
optimization_steps=optimization_steps, | |
full_source_steps=max_source_steps, | |
).images[0] | |
return result, f"β Editing completed with seed {seed}." | |
# Design the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<style> | |
body {background-color: #f5f5f5; color: #333333;} | |
h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;} | |
h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;} | |
.gradio-container {max-width: 800px; margin: auto;} | |
.footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;} | |
</style> | |
""" | |
) | |
gr.Markdown("<h1>π² FlowChef π²</h1>") | |
gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of <u>InstaFlow (SDv1.5) for Image Editing</u></h2>") | |
gr.Markdown("<h3><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h3>") | |
# gr.Markdown("<h3>π‘ We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>") | |
gr.Markdown("<h3>β‘ For better performance, check out our demo on <a href='https://huggingface.co/spaces/FlowChef/FlowChef-Flux1-dev'>Flux</a>!</h3>") | |
# Store current state | |
current_input_image = None | |
current_mask = None | |
current_output_image = None | |
current_params = {} | |
# Images at the top | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.ImageMask( | |
# source="upload", | |
# tool="sketch", | |
type="pil", | |
label="Input Image and Mask", | |
image_mode="RGBA", | |
height=512, | |
width=512, | |
) | |
with gr.Column(): | |
output_image = gr.Image(label="Output Image") | |
# All options below | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Describe what should appear in the masked area..." | |
) | |
edit_prompt = gr.Textbox( | |
label="Editing Prompt", | |
placeholder="Describe how you want to edit the image..." | |
) | |
with gr.Row(): | |
seed = gr.Number(label="Seed (Optional)", value=None) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", minimum=10, maximum=100, value=50 | |
) | |
# Advanced settings in an accordion | |
with gr.Accordion("Advanced Settings", open=False): | |
max_steps = gr.Slider(label="Max Steps", minimum=10, maximum=100, value=50) | |
learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5) | |
true_cfg = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=2) | |
max_source_steps = gr.Slider(label="Max Source Steps", minimum=1, maximum=200, value=40) | |
optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1) | |
mask_input = gr.Image( | |
type="pil", | |
label="Optional Mask", | |
image_mode="RGBA", | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run", variant="primary") | |
# save_button = gr.Button("Save Data", variant="secondary") | |
# def update_visibility(selected_mode): | |
# if selected_mode == "Inpainting": | |
# return gr.update(visible=True), gr.update(visible=False) | |
# else: | |
# return gr.update(visible=True), gr.update(visible=True) | |
# mode.change( | |
# update_visibility, | |
# inputs=mode, | |
# outputs=[prompt, edit_prompt], | |
# ) | |
def run_and_update_status( | |
image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, | |
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input | |
): | |
result_image, result_status = process_image( | |
image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps, | |
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input | |
) | |
# Store current state | |
global current_input_image, current_mask, current_output_image, current_params | |
current_input_image = image_with_mask["background"] if image_with_mask else None | |
current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None) | |
current_output_image = result_image | |
current_params = { | |
"prompt": prompt, | |
"edit_prompt": edit_prompt, | |
"seed": seed, | |
"randomize_seed": randomize_seed, | |
"num_inference_steps": num_inference_steps, | |
"max_steps": max_steps, | |
"learning_rate": learning_rate, | |
"max_source_steps": max_source_steps, | |
"optimization_steps": optimization_steps, | |
"true_cfg": true_cfg, | |
} | |
return result_image | |
def save_data(): | |
if not os.path.exists("saved_results"): | |
os.makedirs("saved_results") | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
save_dir = os.path.join("saved_results", timestamp) | |
os.makedirs(save_dir) | |
# Save images | |
if current_input_image: | |
current_input_image.save(os.path.join(save_dir, "input.png")) | |
if current_mask: | |
current_mask.save(os.path.join(save_dir, "mask.png")) | |
if current_output_image: | |
current_output_image.save(os.path.join(save_dir, "output.png")) | |
# Save parameters | |
with open(os.path.join(save_dir, "parameters.json"), "w") as f: | |
json.dump(current_params, f, indent=4) | |
return f"β Data saved in {save_dir}" | |
run_button.click( | |
fn=run_and_update_status, | |
inputs=[ | |
image_input, | |
prompt, | |
edit_prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
max_steps, | |
learning_rate, | |
max_source_steps, | |
optimization_steps, | |
true_cfg, | |
mask_input | |
], | |
outputs=output_image, | |
) | |
# save_button.click(fn=save_data) | |
gr.Markdown( | |
"<div class='footer'>Developed with β€οΈ using InstaFlow (Stable Diffusion v1.5) and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>" | |
) | |
def load_example_image_with_mask(image_path): | |
# Load the image | |
image = Image.open(image_path) | |
# Create an empty mask of the same size | |
mask = Image.new('L', image.size, 0) | |
return {"background": image, "layers": [mask], "composite": image} | |
examples_dir = "assets" | |
volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg")) | |
dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp")) | |
gr.Examples( | |
examples=[ | |
[ | |
"./saved_results/20241129_154837/input.png", # image with mask | |
"./saved_results/20241129_154837/mask.png", | |
"./saved_results/20241129_154837/output.png", | |
"a cat", # prompt | |
"a tiger", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
50, # max_steps | |
0.5, # learning_rate | |
20, # max_source_steps | |
5, # optimization_steps | |
2, # true_cfg | |
], | |
[ | |
"./saved_results/20241129_195331/input.png", # image with mask | |
"./saved_results/20241129_195331/mask.png", | |
"./saved_results/20241129_195331/output.png", | |
"a cat", # prompt | |
"a silver sculpture of cat", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
50, # max_steps | |
0.5, # learning_rate | |
20, # max_source_steps | |
5, # optimization_steps | |
2, # true_cfg | |
], | |
[ | |
"./saved_results/20241129_160439/input.png", # image with mask | |
"./saved_results/20241129_160439/mask.png", | |
"./saved_results/20241129_160439/output.png", | |
"a dog", # prompt | |
"a lion", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
20, # max_steps | |
0.5, # learning_rate | |
20, # max_source_steps | |
5, # optimization_steps | |
4, # true_cfg | |
], | |
[ | |
"./saved_results/20241129_161118/input.png", # image with mask | |
"./saved_results/20241129_161118/mask.png", | |
"./saved_results/20241129_161118/output.png", | |
"two birds sitting on a branch", # prompt | |
"two origami birds sitting on a branch", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
50, # max_steps | |
0.5, # learning_rate | |
30, # max_source_steps | |
2, # optimization_steps | |
2, # true_cfg | |
], | |
[ | |
"./saved_results/20241129_161602/input.png", # image with mask | |
"./saved_results/20241129_161602/mask.png", | |
"./saved_results/20241129_161602/output.png", | |
"a woman with long hair sitting in the sand at sunset", # prompt | |
"a woman with short hair sitting in the sand at sunset", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
30, # max_steps | |
0.5, # learning_rate | |
20, # max_source_steps | |
2, # optimization_steps | |
2, # true_cfg | |
], | |
[ | |
"./saved_results/20241129_160150/input.png", # image with mask | |
"./saved_results/20241129_160150/mask.png", | |
"./saved_results/20241129_160150/output.png", | |
"A cute rabbit with big eyes", # prompt | |
"A cute pig with big eyes", # edit_prompt | |
0, # seed | |
True, # randomize_seed | |
50, # num_inference_steps | |
40, # max_steps | |
0.5, # learning_rate | |
20, # max_source_steps | |
5, # optimization_steps | |
4, # true_cfg | |
], | |
], | |
inputs=[ | |
image_input, | |
mask_input, | |
output_image, | |
prompt, | |
edit_prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
max_steps, | |
learning_rate, | |
max_source_steps, | |
optimization_steps, | |
true_cfg, | |
], | |
# outputs=[output_image], | |
# fn=run_and_update_status, | |
# cache_examples=True, | |
) | |
demo.launch() | |