submission-form / app.py
lewtun's picture
lewtun HF staff
Add success message
6d09ca9
raw
history blame
5.76 kB
import json
import os
import shutil
from datetime import datetime
from pathlib import Path
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import HfApi, Repository
from utils import http_post, validate_json
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTONLP_USERNAME = os.getenv("AUTONLP_USERNAME")
HF_AUTONLP_BACKEND_API = os.getenv("HF_AUTONLP_BACKEND_API")
LOCAL_REPO = "submission_repo"
###########
### APP ###
###########
st.title("GEM Submissions")
st.markdown(
"""
Welcome to the [GEM benchmark](https://gem-benchmark.com/)! GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation, both through human annotations and automated Metrics.
GEM aims to:
- measure NLG progress across many NLG tasks across languages.
- audit data and models and present results via data cards and model robustness reports.
- develop standards for evaluation of generated text using both automated and human metrics.
Use this page to submit your system's predictions to the benchmark.
"""
)
with st.form(key="form"):
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)
submission_errors = 0
uploaded_file = st.file_uploader("Upload submission.json file", type=["json"])
if uploaded_file:
if uploaded_file.name != "submission.json":
st.error(f"β›” Invalid filename. Please upload a submission.json file.")
submission_errors += 1
else:
data = str(uploaded_file.read(), "utf-8")
json_data = json.loads(data)
is_valid, message = validate_json(json_data)
if is_valid:
st.success(message)
else:
st.error(message)
submission_errors += 1
with st.expander("Submission format"):
st.markdown(
"""
Please follow this JSON format for your `submission.json` file:
```json
{
"submission_name": "An identifying name of your system",
"param_count": 123, # The number of parameters your system has.
"description": "An optional brief description of the system that will be shown on the results page",
"tasks":
{
"dataset_identifier": {
"values": ["output1", "output2", "..."], # A list of system outputs.
# Optionally, you can add the keys which are part of an example to ensure that there is no shuffling mistakes.
"keys": ["key-0", "key-1", ...]
}
}
}
```
In this case, `dataset_identifier` is the identifier of the dataset
followed by an identifier of the set the outputs were created from, for
example `_validation` or `_test`. For example, the `mlsum_de` test set
would have the identifier `mlsum_de_test`. The `keys` field can be set
to avoid accidental shuffling to impact your metrics. Simply add a list
of the `gem_id` for each output example in the same order as your
values. Please see the sample submission below:
"""
)
with open("sample-submission.json", "r") as f:
example_submission = json.load(f)
st.json(example_submission)
token = st.text_input(
"Enter πŸ€— Hub access token",
type="password",
help="You can generate an access token via your πŸ€— Hub settings. See the [docs](https://huggingface.co/docs/hub/security#user-access-tokens) for more details",
)
if token:
try:
user_info = HfApi().whoami(token)
except Exception as e:
st.error("β›” Invalid access token")
submission_errors += 1
submit_button = st.form_submit_button("Make Submission")
if submit_button and submission_errors == 0:
st.write("⏳ Preparing submission for evaluation ...")
user_name = user_info["name"]
submission_name = json_data["submission_name"]
# Create submission dataset under benchmarks ORG
dataset_repo_url = f"https://huggingface.co/datasets/benchmarks/gem-{user_name}"
repo = Repository(
local_dir=LOCAL_REPO,
clone_from=dataset_repo_url,
repo_type="dataset",
private=True,
use_auth_token=HF_TOKEN,
)
submission_metadata = {"benchmark": "gem", "type": "prediction", "submission_name": submission_name}
repo.repocard_metadata_save(submission_metadata)
with open(f"{LOCAL_REPO}/submission.json", "w", encoding="utf-8") as f:
json.dump(json_data, f)
# TODO: add informative commit msg
commit_url = repo.push_to_hub()
if commit_url is not None:
commit_sha = commit_url.split("/")[-1]
else:
commit_sha = repo.git_head_commit_url().split("/")[-1]
submission_time = str(int(datetime.now().timestamp()))
submission_id = submission_name + "__" + commit_sha + "__" + submission_time
payload = {
"username": AUTONLP_USERNAME,
"dataset": "GEM/references",
"task": 1,
"model": "gem",
"submission_dataset": f"benchmarks/gem-{user_name}",
"submission_id": submission_id,
"col_mapping": {},
"split": "test",
"config": None,
}
json_resp = http_post(
path="/evaluate/create", payload=payload, token=HF_TOKEN, domain=HF_AUTONLP_BACKEND_API
).json()
if json_resp["status"] == 1:
st.success(f"βœ… Submission {submission_name} was successfully submitted to the evaluation queue!")
else:
st.error("πŸ™ˆ Oh noes! There was an error submitting your submission. Please contact the organisers")
# Flush local repo
shutil.rmtree(LOCAL_REPO, ignore_errors=True)